cavis/libnd4j/include/ops/declarable/helpers/cpu/confusion.cpp

56 lines
2.0 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/confusion.h>
#include <execution/Threads.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
void _confusionFunctor(NDArray* labels, NDArray* predictions, NDArray* weights, NDArray* output) {
ResultSet arrs = output->allTensorsAlongDimension({1});
int lLen = labels->lengthOf();
auto func = PRAGMA_THREADS_FOR {
for (int j = start; j < stop; j++) {
auto label = labels->e<Nd4jLong>(j);
auto pred = predictions->e<Nd4jLong>(j);
T value = (weights == nullptr ? (T) 1.0f : weights->e<T>(j));
arrs.at(label)->p<T>(pred, value);
}
};
samediff::Threads::parallel_for(func, 0, lLen);
}
void confusionFunctor(sd::LaunchContext * context, NDArray* labels, NDArray* predictions, NDArray* weights, NDArray* output) {
auto xType = output->dataType(); // weights can be null
BUILD_SINGLE_SELECTOR(xType, _confusionFunctor, (labels, predictions, weights, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void _confusionFunctor, (NDArray* labels, NDArray* predictions, NDArray* weights, NDArray* output);, NUMERIC_TYPES);
}
}
}