* initial set of include changes Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * few more rearrangements Signed-off-by: raver119 <raver119@gmail.com> * few more rearrangements Signed-off-by: raver119 <raver119@gmail.com> * few more rearrangements Signed-off-by: raver119 <raver119@gmail.com> * cuda includes rearrangements Signed-off-by: raver119 <raver119@gmail.com> * java update Signed-off-by: raver119 <raver119@gmail.com> * = namespace changed to sd - few CMake variables renamed with SD_ prefix Signed-off-by: raver119 <raver119@gmail.com> * java update Signed-off-by: raver119 <raver119@gmail.com> * LoopKind minor fix Signed-off-by: raver119 <raver119@gmail.com> * few more changes Signed-off-by: raver119 <raver119@gmail.com> * few more changes Signed-off-by: raver119 <raver119@gmail.com> * few more changes Signed-off-by: raver119 <raver119@gmail.com> * sanitizer is optional now Signed-off-by: raver119 <raver119@gmail.com> * dev tests updated Signed-off-by: raver119 <raver119@gmail.com> * few more changes Signed-off-by: raver119 <raver119@gmail.com> * last update Signed-off-by: raver119 <raver119@gmail.com> * java update Signed-off-by: raver119 <raver119@gmail.com>
		
			
				
	
	
		
			259 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
 * Copyright (c) 2015-2018 Skymind, Inc.
 | 
						|
 *
 | 
						|
 * This program and the accompanying materials are made available under the
 | 
						|
 * terms of the Apache License, Version 2.0 which is available at
 | 
						|
 * https://www.apache.org/licenses/LICENSE-2.0.
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | 
						|
 * License for the specific language governing permissions and limitations
 | 
						|
 * under the License.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
//
 | 
						|
//  @author raver119@gmail.com
 | 
						|
//
 | 
						|
 | 
						|
#ifndef LIBND4J_HEADERS_NN_H
 | 
						|
#define LIBND4J_HEADERS_NN_H
 | 
						|
 | 
						|
#include <ops/declarable/headers/common.h>
 | 
						|
 | 
						|
namespace sd {
 | 
						|
    namespace ops {
 | 
						|
 | 
						|
        #if NOT_EXCLUDED(OP_softmax)
 | 
						|
        DECLARE_CONFIGURABLE_OP(softmax, 1, 1, true, 0, 0);
 | 
						|
        DECLARE_CONFIGURABLE_OP(softmax_bp, 2, 1, true, 0, 0);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
         * Local response normalization implementation as TF.
 | 
						|
         * input: 4D array
 | 
						|
         *
 | 
						|
         * T args:
 | 
						|
         *
 | 
						|
         * 0: bias
 | 
						|
         * 1: alpha
 | 
						|
         * 2: beta
 | 
						|
         *
 | 
						|
         * Int arg: depth - optional local radius
 | 
						|
         *
 | 
						|
         * output - 4D array
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_lrn)
 | 
						|
        DECLARE_CONFIGURABLE_OP(lrn, 1, 1, true, 3, 0);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
         * Local response normalization - backprop variant.
 | 
						|
         * input:
 | 
						|
         *  0 - 4D array of data
 | 
						|
         *  1 - epsilon - 4D array of approximation
 | 
						|
         *
 | 
						|
         * T args:
 | 
						|
         *
 | 
						|
         * 0: bias
 | 
						|
         * 1: alpha
 | 
						|
         * 2: beta
 | 
						|
         *
 | 
						|
         * Int arg: depth - optional local radius
 | 
						|
         *
 | 
						|
         * output - next approximation as 4D array
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_lrn)
 | 
						|
        DECLARE_CONFIGURABLE_OP(lrn_bp, 2, 1, true, 3, 0);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
        * Batch normalization implementation.
 | 
						|
        * Reference: https://arxiv.org/abs/1502.03167v3
 | 
						|
        *
 | 
						|
        * Expected arguments:
 | 
						|
        * input: input array (any number of dimensions)
 | 
						|
        * mean:
 | 
						|
        * variance:
 | 
						|
        * gamma:
 | 
						|
        * beta:
 | 
						|
        *
 | 
						|
        * Int args:
 | 
						|
        * 0: apply scale
 | 
						|
        * 1: apply offset
 | 
						|
        *
 | 
						|
        *
 | 
						|
        * T args:
 | 
						|
        * 0: epsilon
 | 
						|
        */
 | 
						|
        #if NOT_EXCLUDED(OP_batchnorm)
 | 
						|
        DECLARE_CUSTOM_OP(batchnorm, 3, 1, false, 1, 2);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
        * back prop in batch normalization
 | 
						|
        *
 | 
						|
        * Expected arguments:
 | 
						|
        * input: input array (any number of dimensions)
 | 
						|
        * mean:
 | 
						|
        * variance:
 | 
						|
        * gamma: optional
 | 
						|
        * beta: optional
 | 
						|
        * dLdOut: next epsilon
 | 
						|
        *
 | 
						|
        * Int args:
 | 
						|
        * 0: apply scale
 | 
						|
        * 1: apply offset
 | 
						|
        *
 | 
						|
        * T args:
 | 
						|
        * 0: epsilon
 | 
						|
        *
 | 
						|
        * output arrays:
 | 
						|
        * dL/dInput
 | 
						|
        * dL/dMean
 | 
						|
        * dL/dVariance
 | 
						|
        * dL/dGamma, optional
 | 
						|
        * dL/dBeta, optional
 | 
						|
        */
 | 
						|
        #if NOT_EXCLUDED(OP_batchnorm)
 | 
						|
        DECLARE_CUSTOM_OP(batchnorm_bp, 4, 3, false, 1, 2);
 | 
						|
        #endif
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
         * This operation updates parameters with provided gradients, wrt learning rate
 | 
						|
         * Expected arguments:
 | 
						|
         * x: parameters, any shape
 | 
						|
         * y: gradients. same shape as x
 | 
						|
         * lr: optional, learning rate
 | 
						|
         *
 | 
						|
         * T args:
 | 
						|
         * 0: optional, learning rate
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_apply_sgd)
 | 
						|
        DECLARE_CONFIGURABLE_OP(apply_sgd, 2, 1, true, -2, 0);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
         * This operation performs batch normalization of layer, it is based on following article https://arxiv.org/abs/1502.03167.
 | 
						|
         * Expected arguments:
 | 
						|
         * x: input 4D array of shape [bS,iH,iW,iD] (data format = NHWC) or [bS,iD,iH,iW] (data format = NCHW), where
 | 
						|
         *    bS - batch size
 | 
						|
         *    iH - input height
 | 
						|
         *    iW - input width
 | 
						|
         *    iD - input depth (or number of channels)
 | 
						|
         * scale:  1D input array of scale factors, shape [iD]
 | 
						|
         * offset: 1D input array of offsets (shifts), shape [iD]
 | 
						|
         * mean: 1D input array of population mean used for inference, shape [iD], this array is required only if isTraining = false
 | 
						|
         * variance: 1D input array of population mean used for inference, shape [iD], this array is required only if isTraining = false
 | 
						|
         *
 | 
						|
         * T input arguments:
 | 
						|
         * 0: epsilon, it is optional argument, default value is 0.001, this is small number to be added to the variance of x
 | 
						|
         *
 | 
						|
         * integer input arguments:
 | 
						|
         * 0: dataFormat, may have two values: zero -> NHWC, unity -> NCHW
 | 
						|
         * 1: isTraining, may have two values: zero -> inference, unity -> training
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_fused_batch_norm)
 | 
						|
        DECLARE_CUSTOM_OP(fused_batch_norm, 3, 1, false, 0, 2);
 | 
						|
        #endif
 | 
						|
 | 
						|
        #if NOT_EXCLUDED(OP_log_softmax)
 | 
						|
        DECLARE_CONFIGURABLE_OP(log_softmax, 1, 1, true, 0, 0);
 | 
						|
        DECLARE_CONFIGURABLE_OP(log_softmax_bp, 2, 1, true, 0, 0);
 | 
						|
        #endif
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
         * relu_layer = relu(x*w + b)
 | 
						|
         */
 | 
						|
        DECLARE_CUSTOM_OP(relu_layer, 3, 1, false, 0, 0);
 | 
						|
 | 
						|
        /**
 | 
						|
         * applies layer normalization to input
 | 
						|
         * y = g * standardize(x) + b
 | 
						|
         *
 | 
						|
         * see sd::ops::standardize
 | 
						|
         *
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_layer_norm)
 | 
						|
                DECLARE_CONFIGURABLE_OP(layer_norm, 3, 1, true, 0, -2);
 | 
						|
                DECLARE_CUSTOM_OP(layer_norm_bp, 4, 1, false, 0, -2);
 | 
						|
        #endif
 | 
						|
 | 
						|
        /**
 | 
						|
         * This operation performs dot product attention on the given timeseries input with the given queries
 | 
						|
         * out = sum(similarity(k_i, q) * v_i)
 | 
						|
         *
 | 
						|
         * similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q
 | 
						|
         *
 | 
						|
         * Optionally with normalization step:
 | 
						|
         * similarity(k, q) = softmax(k * q / sqrt(size(q))
 | 
						|
         *
 | 
						|
         * See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p. 4, eq. 1)
 | 
						|
         *
 | 
						|
         * Note: This supports multiple queries at once, if only one query is available the queries vector still has to
 | 
						|
         * be 3D but can have queryCount = 1
 | 
						|
         *
 | 
						|
         * Note: keys and values usually is the same array. If you want to use it as the same array, simply pass it for
 | 
						|
         * both.
 | 
						|
         *
 | 
						|
         * Expected arguments:
 | 
						|
         * q: input 3D array "queries" of shape [batchSize, featureKeys, queryCount] or 4D array of shape [batchSize, numHeads, featureKeys, queryCount]
 | 
						|
         * k: input 3D array "keys" of shape [batchSize, featureKeys, timesteps] or 4D array of shape [batchSize, numHeads, featureKeys, timesteps]
 | 
						|
         * v: input 3D array "values" of shape [batchSize, featureValues, timesteps] or 4D array of shape [batchSize, numHeads, featureValues, timesteps]
 | 
						|
         * mask: OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps]
 | 
						|
         *
 | 
						|
         * integer input arguments:
 | 
						|
         * 0: normalization, may have two values: zero -> do not apply normalization, one -> apply normalization
 | 
						|
         * 1: withWeights, may have two values: zero -> do not return weights, one -> return weights
 | 
						|
         *
 | 
						|
         * Output Arrays:
 | 
						|
         * 0: Attention result arrays of shape [batchSize, featureValues, queryCount] or [batchSize, numHeads, featureValues, queryCount]
 | 
						|
         * 1: OPTIONAL; Attention weights of shape [batchSize, timesteps, queryCount] or [batchSize, numHeads, timesteps, queryCount]
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_dot_product_attention)
 | 
						|
                DECLARE_CUSTOM_OP(dot_product_attention, 3, -1, false, 0, 2);
 | 
						|
                DECLARE_CUSTOM_OP(dot_product_attention_bp, 4, 3, false, 0, 1);
 | 
						|
        #endif
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
         * This performs multi-headed dot product attention on the given timeseries input
 | 
						|
         * out = concat(head_1, head_2, ..., head_n) * Wo
 | 
						|
         * head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v)
 | 
						|
         *
 | 
						|
         * Optionally with normalization when calculating the attention for each head.
 | 
						|
         *
 | 
						|
         * See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp. 4,5, "3.2.2 Multi-Head Attention")
 | 
						|
         *
 | 
						|
         * This makes use of dot_product_attention OP support for rank 4 inputs.
 | 
						|
         *
 | 
						|
         * Expected arguments:
 | 
						|
         * q: input 3D array "queries" of shape [batchSize, featureKeys, queryCount]
 | 
						|
         * k: input 3D array "keys" of shape [batchSize, featureKeys, timesteps]
 | 
						|
         * v: input 3D array "values" of shape [batchSize, featureValues, timesteps]
 | 
						|
         * Wq: input query projection weights of shape [numHeads, projectedKeys, featureKeys]
 | 
						|
         * Wk: input key projection weights of shape [numHeads, projectedKeys, featureKeys]
 | 
						|
         * Wv: input value projection weights of shape [numHeads, projectedValues, featureValues]
 | 
						|
         * Wo: output projection weights of shape [numHeads * projectedValues, outSize]
 | 
						|
         * mask: OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps]
 | 
						|
         *
 | 
						|
         * integer input arguments:
 | 
						|
         * 0: normalization, may have two values: zero -> do not apply normalization, one -> apply normalization
 | 
						|
         * 1: withWeights, may have two values: zero -> do not return weights, one -> return weights
 | 
						|
         *
 | 
						|
         * Output Arrays:
 | 
						|
         * 0: Attention result arrays of shape [batchSize, outSize, queryCount]
 | 
						|
         * 1: OPTIONAL; Attention weights of shape [batchSize, numHeads, timesteps, queryCount]
 | 
						|
         */
 | 
						|
        #if NOT_EXCLUDED(OP_multi_head_dot_product_attention)
 | 
						|
                DECLARE_CUSTOM_OP(multi_head_dot_product_attention, 7, -1, false, 0, 2);
 | 
						|
                DECLARE_CUSTOM_OP(multi_head_dot_product_attention_bp, 8, 7, false, 0, 1);
 | 
						|
        #endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif |