169 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*******************************************************************************
 | |
|  * Copyright (c) 2015-2018 Skymind, Inc.
 | |
|  *
 | |
|  * This program and the accompanying materials are made available under the
 | |
|  * terms of the Apache License, Version 2.0 which is available at
 | |
|  * https://www.apache.org/licenses/LICENSE-2.0.
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | |
|  * License for the specific language governing permissions and limitations
 | |
|  * under the License.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  ******************************************************************************/
 | |
| 
 | |
| //
 | |
| // Created by george@skymind.io on 6/1/2018.
 | |
| // @author Yurii Shyrma (iuriish@yahoo.com)
 | |
| //
 | |
| 
 | |
| #include <ops/declarable/helpers/axis.h>
 | |
| #include <ops/declarable/CustomOperations.h>
 | |
| 
 | |
| namespace sd {
 | |
| namespace ops {
 | |
| #if NOT_EXCLUDED(OP_reduce_prod)
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| CUSTOM_OP_IMPL(reduce_prod, 1, 1, false, 0, 0) {
 | |
| 
 | |
|     auto input = INPUT_VARIABLE(0);
 | |
|     auto output = OUTPUT_VARIABLE(0);
 | |
| 
 | |
|     std::vector<int> dimensions;
 | |
|     if (block.width() > 1) {
 | |
|         auto axesVector = INPUT_VARIABLE(1);
 | |
|         helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
 | |
|     }
 | |
|     else if (block.getIArguments()->size())
 | |
|         dimensions = *block.getIArguments();
 | |
| 
 | |
|     REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_PROD OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
 | |
| 
 | |
|     for(const auto& item : dimensions)
 | |
|         REQUIRE_TRUE(item >= -input->shapeInfo()[0] && item < input->shapeInfo()[0], 0, "REDUCE_PROD OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
 | |
| 
 | |
|     bool keepDims = false;
 | |
|     if (block.getBArguments()->size())
 | |
|         keepDims = B_ARG(0);
 | |
|     else if (block.getTArguments()->size())
 | |
|         keepDims = (bool)T_ARG(0);
 | |
| 
 | |
|     input->reduceAlongDimension(reduce::Prod, *output, dimensions, keepDims);
 | |
| 
 | |
|     return Status::OK();
 | |
| }
 | |
| 
 | |
| DECLARE_SHAPE_FN(reduce_prod) {
 | |
| 
 | |
|     bool keepDims = false;
 | |
|     if (block.getBArguments()->size())
 | |
|         keepDims = B_ARG(0);
 | |
|     else if (block.getTArguments()->size())
 | |
|         keepDims = (bool)T_ARG(0);
 | |
| 
 | |
|     std::vector<int> dimensions;
 | |
|     if (block.width() > 1) {
 | |
|         auto axesVector = INPUT_VARIABLE(1);
 | |
|         helpers::adjustAxis(INPUT_VARIABLE(0)->rankOf(), axesVector, dimensions);
 | |
|     }
 | |
|     else if (block.getIArguments()->size())
 | |
|         dimensions = *block.getIArguments();
 | |
| 
 | |
|     REQUIRE_TRUE(dimensions.size() <= inputShape->at(0)[0], 0, "REDUCE_PROD OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
 | |
| 
 | |
|     for(const auto& item : dimensions)
 | |
|         REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_PROD OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item);
 | |
| 
 | |
|     return SHAPELIST(ShapeUtils::evalReduceShapeInfo(shape::order(inputShape->at(0)), dimensions, inputShape->at(0), keepDims, false, block.getWorkspace()));
 | |
| }
 | |
| 
 | |
| DECLARE_TYPES(reduce_prod) {
 | |
|     getOpDescriptor()
 | |
|         ->setAllowedInputTypes(sd::DataType::ANY)
 | |
|         ->setAllowedOutputTypes({ALL_FLOATS});
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #if NOT_EXCLUDED(OP_reduce_prod_bp)
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| CUSTOM_OP_IMPL(reduce_prod_bp, 2, 1, false, 0, 0) {
 | |
| 
 | |
|     auto input = INPUT_VARIABLE(0);
 | |
|     auto gradO = INPUT_VARIABLE(1);
 | |
|     auto gradI = OUTPUT_VARIABLE(0);
 | |
| 
 | |
|     if (gradO->lengthOf() == 1) {
 | |
|         gradI->assign(input->reduceNumber(sd::reduce::Prod));
 | |
|         *gradI /= *input;
 | |
|         *gradI *= gradO->e(0);
 | |
|     }
 | |
|     else {
 | |
| 
 | |
|         bool keepDims = false;
 | |
|         auto dimensions = *block.getIArguments();
 | |
| 
 | |
|         if (block.width() > 2) {
 | |
|             auto axesVector = INPUT_VARIABLE(2);
 | |
|             helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
 | |
|         }
 | |
| 
 | |
|         if (block.getBArguments()->size())
 | |
|             keepDims = B_ARG(0);
 | |
|         else if (block.getTArguments()->size())
 | |
|             keepDims = (bool)T_ARG(0);
 | |
| 
 | |
|         REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_NORM1_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
 | |
| 
 | |
|         for(const auto& item : dimensions)
 | |
|             REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_NORM1_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
 | |
| 
 | |
|         // *** calculations *** //
 | |
| 
 | |
|         auto products = input->reduceAlongDimension(reduce::Prod, dimensions, true);
 | |
|         gradI->applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), products, *gradI);
 | |
|         *gradI /= *input;
 | |
| 
 | |
|         if(!keepDims) {
 | |
|             auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace());
 | |
|             *gradI *= gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims));  // for example could be something like [a,b] -> [1,a,1,b]
 | |
|         } else
 | |
|             *gradI *= *gradO;
 | |
|     }
 | |
| 
 | |
|     return Status::OK();
 | |
| }
 | |
| 
 | |
| DECLARE_SHAPE_FN(reduce_prod_bp) {
 | |
| 
 | |
|     auto dimensions = *block.getIArguments();
 | |
|     if (block.width() > 2) {
 | |
|         auto axesVector = INPUT_VARIABLE(2);
 | |
|         helpers::adjustAxis(INPUT_VARIABLE(0)->rankOf(), axesVector, dimensions);
 | |
|     }
 | |
| 
 | |
|     REQUIRE_TRUE(dimensions.size() <= inputShape->at(0)[0], 0, "REDUCE_PROD_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
 | |
| 
 | |
|     for(const auto& item : dimensions)
 | |
|         REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_PROD_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !", inputShape->at(0)[0], inputShape->at(0)[0], item);
 | |
| 
 | |
|     Nd4jLong* outShapeInfo;
 | |
|     COPY_SHAPE(inputShape->at(0), outShapeInfo);
 | |
| 
 | |
|     return SHAPELIST(CONSTANT(outShapeInfo));
 | |
| }
 | |
| 
 | |
| DECLARE_TYPES(reduce_prod_bp) {
 | |
|     getOpDescriptor()
 | |
|         ->setAllowedInputTypes(sd::DataType::ANY)
 | |
|         ->setAllowedOutputTypes({ALL_FLOATS});
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 | |
| }
 |