141 lines
8.8 KiB
C++
141 lines
8.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author saudet
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
using namespace dnnl;
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace platforms {
|
|
PLATFORM_IMPL(avgpool3dnew) {
|
|
auto input = INPUT_VARIABLE(
|
|
0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto output = OUTPUT_VARIABLE(
|
|
0); // [bS, oD, oH, oW, iC] (NDHWC) or [bS, iC, oD, oH, oW] (NCDHW)
|
|
|
|
int kD = INT_ARG(0); // filter(kernel) depth
|
|
int kH = INT_ARG(1); // filter(kernel) height
|
|
int kW = INT_ARG(2); // filter(kernel) width
|
|
int sD = INT_ARG(3); // strides depth
|
|
int sH = INT_ARG(4); // strides height
|
|
int sW = INT_ARG(5); // strides width
|
|
int pD = INT_ARG(6); // paddings depth
|
|
int pH = INT_ARG(7); // paddings height
|
|
int pW = INT_ARG(8); // paddings width
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID
|
|
int extraParam0 = INT_ARG(13); // unnecessary for max case, required only for avg and pnorm cases
|
|
int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 1-NDHWC, 0-NCDHW
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0,
|
|
"MAXPOOL3DNEW OP: rank of input array must be equal to 5, but got %i instead !",
|
|
input->rankOf());
|
|
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0,
|
|
"MAXPOOL3DNEW op: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW,
|
|
indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
std::string expectedOutputShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx(
|
|
{bS, iC, oD, oH, oW, 0, indIOioC, indIOioD, indIOioD + 1, indIOioD + 2}));
|
|
REQUIRE_TRUE(expectedOutputShape == ShapeUtils::shapeAsString(output), 0,
|
|
"MAXPOOL3D op: wrong shape of output array, expected is %s, but got %s instead !",
|
|
expectedOutputShape.c_str(), ShapeUtils::shapeAsString(output).c_str());
|
|
// REQUIRE_TRUE(iD >= kD && iH >= kH && iW >= kW, 0, "MAXPOOL3D OP: the input depth/height/width must be greater or equal to kernel(filter) depth/height/width, but got [%i, %i, %i] and [%i, %i, %i] correspondingly !", iD,iH,iW, kD,kH,kW);
|
|
// REQUIRE_TRUE(kD/2 >= pD && kH/2 >= pH && kW/2 >= pW, 0, "MAXPOOL3D OP: pad depth/height/width must not be greater than half of kernel depth/height/width, but got [%i, %i, %i] and [%i, %i, %i] correspondingly !", pD,pH,pW, kD,kH,kW);
|
|
|
|
if (!isNCDHW) {
|
|
input = new NDArray(
|
|
input->permute({0, 4, 1, 2, 3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
|
|
output = new NDArray(
|
|
output->permute({0, 4, 1, 2, 3})); // [bS, oD, oH, oW, iC] -> [bS, iC, oD, oH, oW]
|
|
}
|
|
|
|
if (isSameMode) // SAME
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
|
|
|
|
|
|
auto poolingMode = PoolingType::AVG_POOL;
|
|
|
|
dnnl_memory_desc_t empty;
|
|
dnnl::memory::desc pool_src_md(empty), pool_dst_md(empty);
|
|
dnnl::memory::desc user_src_md(empty), user_dst_md(empty);
|
|
dnnl::memory::dims pool_strides, pool_kernel, pool_padding, pool_padding_r;
|
|
dnnl::algorithm algorithm;
|
|
mkldnnUtils::getMKLDNNMemoryDescPool3d(kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, poolingMode,
|
|
extraParam0, true,
|
|
bS, iC, iD, iH, iW, oC, oD, oH, oW, input, nullptr, output,
|
|
algorithm,
|
|
&pool_src_md, nullptr, &pool_dst_md, &user_src_md, nullptr,
|
|
&user_dst_md,
|
|
pool_strides, pool_kernel, pool_padding, pool_padding_r);
|
|
auto pool_desc = pooling_forward::desc(prop_kind::forward_inference, algorithm, pool_src_md,
|
|
pool_dst_md,
|
|
pool_strides, pool_kernel, pool_padding, pool_padding_r);
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
dnnl::stream stream(engine);
|
|
auto pool_prim_desc = pooling_forward::primitive_desc(pool_desc, engine);
|
|
auto user_src_memory = dnnl::memory(user_src_md, engine, input->buffer());
|
|
auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
|
|
auto pool_src_memory = user_src_memory;
|
|
if (pool_prim_desc.src_desc() != user_src_memory.get_desc()) {
|
|
pool_src_memory = dnnl::memory(pool_prim_desc.src_desc(), engine);
|
|
reorder(user_src_memory, pool_src_memory).execute(stream, user_src_memory, pool_src_memory);
|
|
}
|
|
auto pool_dst_memory = user_dst_memory;
|
|
if (pool_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
pool_dst_memory = dnnl::memory(pool_prim_desc.dst_desc(), engine);
|
|
}
|
|
pooling_forward(pool_prim_desc).execute(stream, {{DNNL_ARG_SRC, pool_src_memory},
|
|
{DNNL_ARG_DST, pool_dst_memory}});
|
|
if (pool_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
reorder(pool_dst_memory, user_dst_memory).execute(stream, pool_dst_memory, user_dst_memory);
|
|
}
|
|
stream.wait();
|
|
|
|
if (!isNCDHW) {
|
|
delete input;
|
|
delete output;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(avgpool3dnew) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
return block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output});
|
|
}
|
|
}
|
|
}
|
|
} |