cavis/libnd4j/tests_cpu/layers_tests/CuDnnTests.cu

148 lines
5.1 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "testlayers.h"
#include <initializer_list>
#include <NDArrayFactory.h>
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/CustomOperations.h>
#include <execution/Engine.h>
#ifdef HAVE_CUDNN
#include <ops/declarable/platform/cudnn/cudnnUtils.h>
#endif
using namespace nd4j;
class CuDnnTests : public testing::Test {
public:
};
static void printer(std::initializer_list<nd4j::ops::platforms::PlatformHelper*> helpers) {
for (auto v:helpers) {
nd4j_printf("Initialized [%s]\n", v->name().c_str());
}
}
TEST_F(CuDnnTests, helpers_includer) {
// we need this block, to make sure all helpers are still available within binary, and not optimized out by linker
#ifdef HAVE_CUDNN
nd4j::ops::platforms::PLATFORM_conv2d_ENGINE_CUDA conv2d;
nd4j::ops::platforms::PLATFORM_conv2d_bp_ENGINE_CUDA conv2d_bp;
nd4j::ops::platforms::PLATFORM_conv3dnew_ENGINE_CUDA conv3dnew;
nd4j::ops::platforms::PLATFORM_conv3dnew_bp_ENGINE_CUDA conv3dnew_bp;
nd4j::ops::platforms::PLATFORM_depthwise_conv2d_ENGINE_CUDA depthwise_conv2d;
nd4j::ops::platforms::PLATFORM_depthwise_conv2d_bp_ENGINE_CUDA depthwise_conv2d_bp;
nd4j::ops::platforms::PLATFORM_batchnorm_ENGINE_CUDA batchnorm;
nd4j::ops::platforms::PLATFORM_batchnorm_bp_ENGINE_CUDA batchnorm_bp;
nd4j::ops::platforms::PLATFORM_avgpool2d_ENGINE_CUDA avgpool2d;
nd4j::ops::platforms::PLATFORM_avgpool2d_bp_ENGINE_CUDA avgpool2d_bp;
nd4j::ops::platforms::PLATFORM_maxpool2d_ENGINE_CUDA maxpool2d;
nd4j::ops::platforms::PLATFORM_maxpool2d_bp_ENGINE_CUDA maxpool2d_bp;
nd4j::ops::platforms::PLATFORM_avgpool3dnew_ENGINE_CUDA avgpool3dnew;
nd4j::ops::platforms::PLATFORM_avgpool3dnew_bp_ENGINE_CUDA avgpool3dnew_bp;
nd4j::ops::platforms::PLATFORM_maxpool3dnew_ENGINE_CUDA maxpool3dnew;
nd4j::ops::platforms::PLATFORM_maxpool3dnew_bp_ENGINE_CUDA maxpool3dnew_bp;
printer({&conv2d});
printer({&conv2d_bp});
printer({&conv3dnew});
printer({&conv3dnew_bp});
printer({&depthwise_conv2d});
printer({&depthwise_conv2d_bp});
printer({&batchnorm});
printer({&batchnorm_bp});
printer({&avgpool2d});
printer({&avgpool2d_bp});
printer({&maxpool2d});
printer({&maxpool2d_bp});
printer({&avgpool3dnew});
printer({&avgpool3dnew_bp});
printer({&maxpool3dnew});
printer({&maxpool3dnew_bp});
#endif
}
TEST_F(CuDnnTests, mixed_helpers_test_1) {
#if defined(HAVE_CUDNN) && defined (HAVE_MKLDNN)
nd4j_printf("Mixed platforms test\n", "");
int bS=2, iH=4,iW=3, iC=4,oC=3, kH=3,kW=2, sH=1,sW=1, pH=0,pW=0, dH=1,dW=1;
int oH=2,oW=2;
int paddingMode = 0; // 1-SAME, 0-VALID;
int dataFormat = 0; // 1-NHWC, 0-NCHW
auto input = NDArrayFactory::create<float>('c', {bS, iC, iH, iW});
auto weights = NDArrayFactory::create<float>('c', {oC, iC, kH, kW});
auto bias = NDArrayFactory::create<float>('c', {oC}, {1,2,3});
auto expOutput = NDArrayFactory::create<float>('c', {bS, oC, oH, oW}, {61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f, 61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f});
auto zCUDA = expOutput.like();
auto zMKL = expOutput.like();
input = 2.;
weights.linspace(0.1, 0.1);
weights.permutei({2,3,1,0});
input.syncToHost();
weights.syncToHost();
bias.syncToHost();
nd4j::ops::conv2d op;
// cuDNN part
Context cuda(1);
cuda.setTargetEngine(samediff::Engine::ENGINE_CUDA);
cuda.setInputArray(0, &input);
cuda.setInputArray(1, &weights);
cuda.setInputArray(2, &bias);
cuda.setOutputArray(0, &zCUDA);
cuda.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat});
auto statusCUDA = op.execute(&cuda);
ASSERT_EQ(Status::OK(), statusCUDA);
ASSERT_EQ(expOutput, zCUDA);
// MKL-DNN part
Context mkl(1);
mkl.setTargetEngine(samediff::Engine::ENGINE_CPU);
mkl.setInputArray(0, &input);
mkl.setInputArray(1, &weights);
mkl.setInputArray(2, &bias);
mkl.setOutputArray(0, &zMKL);
mkl.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat});
auto statusMKL = op.execute(&mkl);
zMKL.tickWriteHost();
ASSERT_EQ(Status::OK(), statusMKL);
ASSERT_EQ(expOutput, zMKL);
#endif
}