cavis/libnd4j/include/ops/declarable/helpers/cpu/batchnorm.cpp

199 lines
8.1 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include<ops/declarable/helpers/batchnorm.h>
#include <helpers/ShapeUtils.h>
#include <OmpLaunchHelper.h>
#include <execution/Threads.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void batchnorm_(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta,
NDArray* output,
const std::vector<int>& axes, const double epsilon) {
// formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta
const T* x = input->bufferAsT<T>();
T* z = output->bufferAsT<T>();
const T* m = mean->bufferAsT<T>();
const T* v = variance->bufferAsT<T>();
const T* g = gamma == nullptr ? nullptr : gamma->bufferAsT<T>();
const T* b = beta == nullptr ? nullptr : beta->bufferAsT<T>();
const bool xzSameOffset = shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo());
bool paramSameOffset = shape::haveSameShapeAndStrides(mean->getShapeInfo(), variance->getShapeInfo());
if(paramSameOffset && gamma != nullptr)
paramSameOffset &= shape::haveSameShapeAndStrides(mean->getShapeInfo(), gamma->getShapeInfo());
if(paramSameOffset && beta != nullptr)
paramSameOffset &= shape::haveSameShapeAndStrides(mean->getShapeInfo(), beta->getShapeInfo());
const Nd4jLong lenBig = input->lengthOf();
const Nd4jLong lenSmall = mean->lengthOf();
const Nd4jLong steps = lenBig / lenSmall;
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), axes);
OmpLaunchHelper info(lenBig, lenSmall);
auto func = PRAGMA_THREADS_DO {
Nd4jLong* xOffsets = new Nd4jLong[steps];
Nd4jLong* zOffsets = xzSameOffset ? xOffsets : new Nd4jLong[steps];
Nd4jLong* auxBuff = new Nd4jLong[2 * input->rankOf()];
for (int j = 0; j < lenSmall; ++j) {
const bool isOwner = (j < info._numThreads) ? thread_id == j : thread_id == (j % info._numThreads);
if(!isOwner)
continue;
const auto meanOffset = shape::getIndexOffset(j, mean->getShapeInfo());
const auto varOffset = paramSameOffset ? meanOffset : shape::getIndexOffset(j, variance->getShapeInfo());
const auto meanVal = m[meanOffset];
auto sigmaInvGam = static_cast<T>(1) / nd4j::math::nd4j_sqrt<T, T>(v[varOffset] + epsilon);
if(g != nullptr) {
const auto gammaOffset = paramSameOffset ? meanOffset : shape::getIndexOffset(j, gamma->getShapeInfo());
sigmaInvGam *= g[gammaOffset];
}
T betaVal = static_cast<T>(0);
if(b != nullptr) {
const auto betaOffset = paramSameOffset ? meanOffset : shape::getIndexOffset(j, beta->getShapeInfo());
betaVal = b[betaOffset];
}
// calculate offsets for input and output
shape::outerArrayOffsets(xOffsets, j, input->getShapeInfo(), mean->getShapeInfo(), auxBuff, dimsToExclude.data());
if(!xzSameOffset)
shape::outerArrayOffsets(zOffsets, j, output->getShapeInfo(), mean->getShapeInfo(), auxBuff, dimsToExclude.data());
PRAGMA_OMP_SIMD
for (uint i = 0; i < steps; ++i)
z[zOffsets[i]] = (x[xOffsets[i]] - meanVal) * sigmaInvGam + betaVal;
}
delete []auxBuff;
delete []xOffsets;
if(!xzSameOffset)
delete []zOffsets;
};
samediff::Threads::parallel_do(func, info._numThreads);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void batchnorm2_(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta,
NDArray* output,
const std::vector<int>& axes, const double epsilon) {
// formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta
const auto x = input->bufferAsT<T>();
auto z = output->bufferAsT<T>();
const auto m = mean->bufferAsT<T>();
const auto v = variance->bufferAsT<T>();
const auto g = gamma == nullptr ? nullptr : gamma->bufferAsT<T>();
const auto b = beta == nullptr ? nullptr : beta->bufferAsT<T>();
// xRank == zRank, minRank = meanRank = varianceRank = gammaRank = betaRank
const uint xRank = input->rankOf();
const uint minRank = mean->rankOf();
const uint numAxes = axes.size();
const bool xzSameOffset = shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo());
bool paramSameOffset = shape::haveSameShapeAndStrides(mean->getShapeInfo(), variance->getShapeInfo());
if(paramSameOffset && gamma != nullptr)
paramSameOffset &= shape::haveSameShapeAndStrides(mean->getShapeInfo(), gamma->getShapeInfo());
if(paramSameOffset && beta != nullptr)
paramSameOffset &= shape::haveSameShapeAndStrides(mean->getShapeInfo(), beta->getShapeInfo());
auto func = PRAGMA_THREADS_FOR {
Nd4jLong coords[MAX_RANK];
for (auto i = start; i < stop; i += increment) {
shape::index2coords(i, input->getShapeInfo(), coords);
const auto xOffset = shape::getOffset(input->getShapeInfo(), coords);
const auto zOffset = xzSameOffset ? xOffset : shape::getOffset(output->getShapeInfo(), coords);
if(minRank == xRank) {
for (uint i = 0, j = 0; i < xRank; ++i) {
if(j < numAxes && i != axes[j])
coords[i] = 0;
else
++j;
}
}
else // minRank = numAxes = 1 in this case
coords[0] = coords[axes[0]];
const auto meanOffset = shape::getOffset(mean->getShapeInfo(), coords);
const auto varianceOffset = paramSameOffset ? meanOffset : shape::getOffset(variance->getShapeInfo(), coords);
T sigmaInvGam = 1. / nd4j::math::nd4j_sqrt<T, T>(v[varianceOffset] + epsilon);
if(g != nullptr) {
const auto gammaOffset = paramSameOffset ? meanOffset : shape::getOffset(gamma->getShapeInfo(), coords);
sigmaInvGam *= g[gammaOffset];
}
z[zOffset] = (x[xOffset] - m[meanOffset]) * sigmaInvGam;
if(b != nullptr) {
const auto betaOffset = paramSameOffset ? meanOffset : shape::getOffset(beta->getShapeInfo(), coords);
z[zOffset] += b[betaOffset];
}
}
};
samediff::Threads::parallel_for(func, 0, input->lengthOf());
}
//////////////////////////////////////////////////////////////////////////
void batchnorm(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta, NDArray* output, const std::vector<int>& axes, const double epsilon) {
// batchnorm2_ is slower
BUILD_SINGLE_SELECTOR(input->dataType(), batchnorm_, (input, mean, variance, gamma, beta, output, axes, epsilon), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void batchnorm_, (const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta, NDArray* output, const std::vector<int>& axes, const double epsilon), FLOAT_TYPES);
}
}
}