cavis/nd4j/samediff-import/samediff-import-onnx/onnx-processes.pbtxt

6750 lines
138 KiB
Plaintext

mappings {
frameworkName: "onnx"
opName: "add"
inputFrameworkOpName: "Add"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Add"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Add"
}
}
mappings {
frameworkName: "onnx"
opName: "tan"
inputFrameworkOpName: "Tan"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Tan"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Tan"
}
}
mappings {
frameworkName: "onnx"
opName: "or"
inputFrameworkOpName: "Or"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "A"
}
ruleType: "tensor"
inputFrameworkOpName: "Or"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Or"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "comparable"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "comparable"
argType: DOUBLE
}
}
inputFrameworkOpName: "Or"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_max"
inputFrameworkOpName: "ReduceMax"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceMax"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMax"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMax"
}
}
mappings {
frameworkName: "onnx"
opName: "maxpool2d"
inputFrameworkOpName: "MaxPool"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "isNCHW"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isNCHW"
argType: INT64
argIndex: 10
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "extraParam0"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "extraParam0"
argType: INT64
argIndex: 9
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "isSameMode"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isSameMode"
argType: INT64
argIndex: 8
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "dH"
outputIntName: "dH"
inputFloatName: "dilations"
inputToOutput {
key: "dH"
value: "dilations"
}
ruleType: "attribute"
transformerArgs {
key: "dH"
transformerArgs {
name: "dilations"
argIndex: 6
}
transformerArgs {
name: "dH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
transformerArgs {
key: "dH"
transformerArgs {
name: "dilations"
argIndex: 6
}
transformerArgs {
name: "dH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "dW"
outputIntName: "dW"
inputFloatName: "dilations"
inputToOutput {
key: "dW"
value: "dilations"
}
ruleType: "attribute"
transformerArgs {
key: "dW"
transformerArgs {
name: "dilations"
int64Value: 1
argIndex: 7
}
transformerArgs {
name: "dW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
transformerArgs {
key: "dW"
transformerArgs {
name: "dilations"
int64Value: 1
argIndex: 7
}
transformerArgs {
name: "dW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "pads"
outputIntName: "pH"
inputFloatName: "pads"
inputToOutput {
key: "pH"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pH"
transformerArgs {
name: "pads"
argIndex: 4
}
transformerArgs {
name: "pads"
argType: INT64
argIndex: 4
}
}
transformerArgs {
key: "pH"
transformerArgs {
name: "pads"
argIndex: 4
}
transformerArgs {
name: "pads"
argType: INT64
argIndex: 4
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "pads"
outputIntName: "pW"
inputFloatName: "pads"
inputToOutput {
key: "pW"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pW"
transformerArgs {
name: "pads"
int64Value: 1
argIndex: 5
}
transformerArgs {
name: "pads"
argType: INT64
argIndex: 5
}
}
transformerArgs {
key: "pW"
transformerArgs {
name: "pads"
int64Value: 1
argIndex: 5
}
transformerArgs {
name: "pads"
argType: INT64
argIndex: 5
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "sH"
outputIntName: "sH"
inputFloatName: "strides"
inputToOutput {
key: "sH"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sH"
transformerArgs {
name: "strides"
argIndex: 2
}
transformerArgs {
name: "sH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
transformerArgs {
key: "sH"
transformerArgs {
name: "strides"
argIndex: 2
}
transformerArgs {
name: "sH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "sW"
outputIntName: "sW"
inputFloatName: "strides"
inputToOutput {
key: "sW"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sW"
transformerArgs {
name: "strides"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "sW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
transformerArgs {
key: "sW"
transformerArgs {
name: "strides"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "sW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kH"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kH"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kH"
transformerArgs {
name: "kernel_shape"
}
}
inputFrameworkOpName: "MaxPool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kW"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kW"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kW"
transformerArgs {
name: "kernel_shape"
int64Value: 1
argIndex: 1
}
}
inputFrameworkOpName: "MaxPool"
}
}
mappings {
frameworkName: "onnx"
opName: "size"
inputFrameworkOpName: "Size"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Size"
}
}
mappings {
frameworkName: "onnx"
opName: "lrn"
inputFrameworkOpName: "LRN"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "LRN"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "size"
outputIntName: "depth"
inputFloatName: "alpha"
inputFloatName: "beta"
inputFloatName: "bias"
outputDoubleName: "alpha"
outputDoubleName: "beta"
outputDoubleName: "bias"
inputToOutput {
key: "alpha"
value: "alpha"
}
inputToOutput {
key: "beta"
value: "beta"
}
inputToOutput {
key: "bias"
value: "bias"
}
inputToOutput {
key: "depth"
value: "size"
}
ruleType: "attribute"
inputFrameworkOpName: "LRN"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "LRN"
}
}
mappings {
frameworkName: "onnx"
opName: "isinf"
inputFrameworkOpName: "IsInf"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "IsInf"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "IsInf"
}
}
mappings {
frameworkName: "onnx"
opName: "batchnorm"
inputFrameworkOpName: "BatchNormalization"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "mean"
inputTensorName: "var"
inputTensorName: "scale"
outputTensorName: "input"
outputTensorName: "mean"
outputTensorName: "variance"
outputTensorName: "gamma"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "mean"
value: "mean"
}
inputToOutput {
key: "variance"
value: "var"
}
inputToOutput {
key: "gamma"
value: "scale"
}
ruleType: "tensor"
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputFloatName: "epsilon"
outputDoubleName: "epsilon"
inputToOutput {
key: "epsilon"
value: "epsilon"
}
ruleType: "attribute"
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "applyGamma"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "applyGamma"
boolValue: true
argType: BOOL
argIndex: 1
}
}
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "applyBeta"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "applyBeta"
boolValue: true
argType: BOOL
argIndex: 2
}
}
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "applyScale"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "applyScale"
int64Value: 1
argType: INT64
}
}
inputFrameworkOpName: "BatchNormalization"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "applyOffset"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "applyOffset"
int64Value: 1
argType: INT64
argIndex: 1
}
}
inputFrameworkOpName: "BatchNormalization"
}
}
mappings {
frameworkName: "onnx"
opName: "elu"
inputFrameworkOpName: "Elu"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Elu"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputFloatName: "alpha"
outputDoubleName: "alpha"
inputToOutput {
key: "alpha"
value: "alpha"
}
ruleType: "attribute"
inputFrameworkOpName: "Elu"
}
}
mappings {
frameworkName: "onnx"
opName: "concat"
inputFrameworkOpName: "Concat"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "inputs"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "inputs"
}
ruleType: "tensor"
inputFrameworkOpName: "Concat"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "concatDimension"
inputToOutput {
key: "concatDimension"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "Concat"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "isDynamicAxis"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isDynamicAxis"
argType: BOOL
}
}
inputFrameworkOpName: "Concat"
}
}
mappings {
frameworkName: "onnx"
opName: "top_k"
inputFrameworkOpName: "TopK"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "TopK"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "sorted"
outputBooleanName: "needSort"
inputToOutput {
key: "needSort"
value: "sorted"
}
ruleType: "attribute"
inputFrameworkOpName: "TopK"
}
rule {
ruleName: "ndarrayinputtonumericalattribute"
functionName: "ndarrayinputtonumericalattribute"
outputIntName: "k"
inputToOutput {
key: "k"
value: "K"
}
ruleType: "attribute"
inputFrameworkOpName: "TopK"
}
}
mappings {
frameworkName: "onnx"
opName: "equals"
inputFrameworkOpName: "Equal"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Equal"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Equal"
}
}
mappings {
frameworkName: "onnx"
opName: "matmul"
inputFrameworkOpName: "MatMul"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "MatMul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "transposeX"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "transposeX"
argType: BOOL
}
}
inputFrameworkOpName: "MatMul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "transposeY"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "transposeY"
argType: BOOL
argIndex: 1
}
}
inputFrameworkOpName: "MatMul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "transposeZ"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "transposeZ"
argType: BOOL
argIndex: 2
}
}
inputFrameworkOpName: "MatMul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "alpha"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "alpha"
argType: DOUBLE
}
}
inputFrameworkOpName: "MatMul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "beta"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "beta"
doubleValue: 1.0
argType: DOUBLE
argIndex: 1
}
}
inputFrameworkOpName: "MatMul"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_min"
inputFrameworkOpName: "ReduceMin"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceMin"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMin"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMin"
}
}
mappings {
frameworkName: "onnx"
opName: "sinh"
inputFrameworkOpName: "Sinh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Sinh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sinh"
}
}
mappings {
frameworkName: "onnx"
opName: "asinh"
inputFrameworkOpName: "Asinh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Asinh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Asinh"
}
}
mappings {
frameworkName: "onnx"
opName: "gather_nd"
inputFrameworkOpName: "GatherND"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "indices"
inputTensorName: "data"
outputTensorName: "indices"
outputTensorName: "input"
inputToOutput {
key: "indices"
value: "indices"
}
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "GatherND"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "checkIndices"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "checkIndices"
boolValue: true
argType: BOOL
}
}
inputFrameworkOpName: "GatherND"
}
}
mappings {
frameworkName: "onnx"
opName: "squeeze"
inputFrameworkOpName: "Squeeze"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Squeeze"
}
rule {
ruleName: "convertinputnumberlisttondarray"
functionName: "convertinputnumberlisttondarray"
inputToOutput {
key: "a"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "Squeeze"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "_a"
inputToOutput {
key: "_a"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "Squeeze"
}
}
mappings {
frameworkName: "onnx"
opName: "identity"
inputFrameworkOpName: "Identity"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Identity"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Identity"
}
}
mappings {
frameworkName: "onnx"
opName: "less"
inputFrameworkOpName: "Less"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Less"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Less"
}
}
mappings {
frameworkName: "onnx"
opName: "softplus"
inputFrameworkOpName: "Softplus"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Softplus"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Softplus"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_sum"
inputFrameworkOpName: "ReduceSum"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceSum"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceSum"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceSum"
}
}
mappings {
frameworkName: "onnx"
opName: "tanh"
inputFrameworkOpName: "Tanh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Tanh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Tanh"
}
}
mappings {
frameworkName: "onnx"
opName: "subtract"
inputFrameworkOpName: "Sub"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Sub"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sub"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_prod"
inputFrameworkOpName: "ReduceProd"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceProd"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceProd"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceProd"
}
}
mappings {
frameworkName: "onnx"
opName: "multiply"
inputFrameworkOpName: "Mul"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Mul"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Mul"
}
}
mappings {
frameworkName: "onnx"
opName: "log"
inputFrameworkOpName: "Log"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Log"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Log"
}
}
mappings {
frameworkName: "onnx"
opName: "flatten_2d"
inputFrameworkOpName: "Flatten"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Flatten"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "flattenDimension"
inputToOutput {
key: "flattenDimension"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "Flatten"
}
}
mappings {
frameworkName: "onnx"
opName: "range"
inputFrameworkOpName: "Range"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "start"
inputTensorName: "limit"
inputTensorName: "delta"
outputTensorName: "from"
outputTensorName: "to"
outputTensorName: "step"
inputToOutput {
key: "from"
value: "start"
}
inputToOutput {
key: "to"
value: "limit"
}
inputToOutput {
key: "step"
value: "delta"
}
ruleType: "tensor"
inputFrameworkOpName: "Range"
}
rule {
ruleName: "ndarrayinputtonumericalattribute"
functionName: "ndarrayinputtonumericalattribute"
outputIntName: "from"
inputToOutput {
key: "from"
value: "start"
}
ruleType: "attribute"
inputFrameworkOpName: "Range"
}
rule {
ruleName: "ndarrayinputtonumericalattribute"
functionName: "ndarrayinputtonumericalattribute"
outputIntName: "to"
inputToOutput {
key: "to"
value: "limit"
}
ruleType: "attribute"
inputFrameworkOpName: "Range"
}
rule {
ruleName: "ndarrayinputtonumericalattribute"
functionName: "ndarrayinputtonumericalattribute"
outputIntName: "step"
inputToOutput {
key: "step"
value: "delta"
}
ruleType: "attribute"
inputFrameworkOpName: "Range"
}
}
mappings {
frameworkName: "onnx"
opName: "transpose"
inputFrameworkOpName: "Transpose"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Transpose"
}
rule {
ruleName: "listnumbertondarray"
functionName: "listnumbertondarray"
inputToOutput {
key: "permuteDims"
value: "perm"
}
ruleType: "attribute"
inputFrameworkOpName: "Transpose"
}
}
mappings {
frameworkName: "onnx"
opName: "gather"
inputFrameworkOpName: "Gather"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "indices"
inputTensorName: "data"
outputTensorName: "indices"
outputTensorName: "input"
inputToOutput {
key: "indices"
value: "indices"
}
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Gather"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "Gather"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Gather"
}
}
mappings {
frameworkName: "onnx"
opName: "argmax"
inputFrameworkOpName: "ArgMax"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ArgMax"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ArgMax"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "ArgMax"
}
}
mappings {
frameworkName: "onnx"
opName: "not"
inputFrameworkOpName: "Not"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Not"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "comparable"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "comparable"
argType: DOUBLE
}
}
inputFrameworkOpName: "Not"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_mean"
inputFrameworkOpName: "ReduceMean"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceMean"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMean"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceMean"
}
}
mappings {
frameworkName: "onnx"
opName: "reshape"
inputFrameworkOpName: "Reshape"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
inputTensorName: "shape"
outputTensorName: "input"
outputTensorName: "shape"
inputToOutput {
key: "input"
value: "data"
}
inputToOutput {
key: "shape"
value: "shape"
}
ruleType: "tensor"
inputFrameworkOpName: "Reshape"
}
rule {
ruleName: "ndarraytointattributevalue"
functionName: "ndarraytointattributevalue"
outputIntName: "shapeArr"
inputToOutput {
key: "shapeArr"
value: "shape"
}
ruleType: "attribute"
inputFrameworkOpName: "Reshape"
}
}
mappings {
frameworkName: "onnx"
opName: "randomuniform"
inputFrameworkOpName: "RandomUniform"
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputFloatName: "low"
inputFloatName: "high"
outputDoubleName: "min"
outputDoubleName: "max"
inputToOutput {
key: "min"
value: "low"
}
inputToOutput {
key: "max"
value: "high"
}
ruleType: "attribute"
inputFrameworkOpName: "RandomUniform"
}
rule {
ruleName: "listnumbertondarray"
functionName: "listnumbertondarray"
inputToOutput {
key: "shape"
value: "shape"
}
ruleType: "attribute"
inputFrameworkOpName: "RandomUniform"
}
}
mappings {
frameworkName: "onnx"
opName: "boolean_and"
inputFrameworkOpName: "And"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "And"
}
}
mappings {
frameworkName: "onnx"
opName: "softmax"
inputFrameworkOpName: "Softmax"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Softmax"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimension"
inputToOutput {
key: "dimension"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "Softmax"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Softmax"
}
}
mappings {
frameworkName: "onnx"
opName: "leakyrelu"
inputFrameworkOpName: "LeakyRelu"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "LeakyRelu"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputFloatName: "alpha"
outputDoubleName: "alpha"
inputToOutput {
key: "alpha"
value: "alpha"
}
ruleType: "attribute"
inputFrameworkOpName: "LeakyRelu"
}
}
mappings {
frameworkName: "onnx"
opName: "erf"
inputFrameworkOpName: "Erf"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Erf"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Erf"
}
}
mappings {
frameworkName: "onnx"
opName: "pow_pairwise"
inputFrameworkOpName: "Pow"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "Y"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "y"
value: "Y"
}
ruleType: "tensor"
inputFrameworkOpName: "Pow"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Pow"
}
}
mappings {
frameworkName: "onnx"
opName: "acos"
inputFrameworkOpName: "Acos"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Acos"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Acos"
}
}
mappings {
frameworkName: "onnx"
opName: "sin"
inputFrameworkOpName: "Sin"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Sin"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sin"
}
}
mappings {
frameworkName: "onnx"
opName: "bitwise_xor"
inputFrameworkOpName: "Xor"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Xor"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Xor"
}
}
mappings {
frameworkName: "onnx"
opName: "ceil"
inputFrameworkOpName: "Ceil"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Ceil"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Ceil"
}
}
mappings {
frameworkName: "onnx"
opName: "relu"
inputFrameworkOpName: "Relu"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Relu"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Relu"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "cutoff"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "cutoff"
argType: DOUBLE
}
}
inputFrameworkOpName: "Relu"
}
}
mappings {
frameworkName: "onnx"
opName: "split"
inputFrameworkOpName: "Split"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "a"
inputToOutput {
key: "a"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Split"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "Split"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "numSplit"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "numSplit"
argType: INT64
}
}
inputFrameworkOpName: "Split"
}
rule {
ruleName: "listnumbertondarray"
functionName: "listnumbertondarray"
inputToOutput {
key: "b"
value: "split"
}
ruleType: "attribute"
inputFrameworkOpName: "Split"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_logsumexp"
inputFrameworkOpName: "ReduceLogSumExp"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceLogSumExp"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputDoubleName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceLogSumExp"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "keepdims"
outputDoubleName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceLogSumExp"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceLogSumExp"
}
}
mappings {
frameworkName: "onnx"
opName: "matmul"
inputFrameworkOpName: "Gemm"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Gemm"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "transA"
inputIntName: "transB"
inputFloatName: "alpha"
inputFloatName: "beta"
outputDoubleName: "alpha"
outputDoubleName: "beta"
outputBooleanName: "transposeX"
outputBooleanName: "transposeY"
inputToOutput {
key: "alpha"
value: "alpha"
}
inputToOutput {
key: "beta"
value: "beta"
}
inputToOutput {
key: "transposeX"
value: "transA"
}
inputToOutput {
key: "transposeY"
value: "transB"
}
ruleType: "attribute"
inputFrameworkOpName: "Gemm"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "transZ"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "transZ"
argType: BOOL
argIndex: 2
}
}
inputFrameworkOpName: "Gemm"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "transposeZ"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "transposeZ"
argType: BOOL
argIndex: 2
}
}
inputFrameworkOpName: "Gemm"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "transA"
inputIntName: "transB"
outputIntName: "transX"
outputIntName: "transY"
inputToOutput {
key: "transX"
value: "transA"
}
inputToOutput {
key: "transY"
value: "transB"
}
ruleType: "attribute"
inputFrameworkOpName: "Gemm"
}
}
mappings {
frameworkName: "onnx"
opName: "acosh"
inputFrameworkOpName: "Acosh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Acosh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Acosh"
}
}
mappings {
frameworkName: "onnx"
opName: "less_equal"
inputFrameworkOpName: "LessOrEqual"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "LessOrEqual"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "LessOrEqual"
}
}
mappings {
frameworkName: "onnx"
opName: "cosh"
inputFrameworkOpName: "Cosh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Cosh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Cosh"
}
}
mappings {
frameworkName: "onnx"
opName: "non_max_suppression_v3"
inputFrameworkOpName: "NonMaxSuppression"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "boxes"
inputTensorName: "scores"
inputTensorName: "max_output_boxes_per_class"
inputTensorName: "iou_threshold"
inputTensorName: "score_threshold"
outputTensorName: "boxes"
outputTensorName: "scales"
outputTensorName: "maxOutSize"
outputTensorName: "iouThreshold"
outputTensorName: "scoreThreshold"
inputToOutput {
key: "boxes"
value: "boxes"
}
inputToOutput {
key: "scales"
value: "scores"
}
inputToOutput {
key: "maxOutSize"
value: "max_output_boxes_per_class"
}
inputToOutput {
key: "iouThreshold"
value: "iou_threshold"
}
inputToOutput {
key: "scoreThreshold"
value: "score_threshold"
}
ruleType: "tensor"
inputFrameworkOpName: "NonMaxSuppression"
}
rule {
ruleName: "ndarraytointattributevalue"
functionName: "ndarraytointattributevalue"
outputIntName: "maxOutputSize"
inputToOutput {
key: "maxOutputSize"
value: "max_output_boxes_per_class"
}
ruleType: "attribute"
inputFrameworkOpName: "NonMaxSuppression"
}
}
mappings {
frameworkName: "onnx"
opName: "log_softmax"
inputFrameworkOpName: "LogSoftmax"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "LogSoftmax"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimension"
inputToOutput {
key: "dimension"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "LogSoftmax"
}
}
mappings {
frameworkName: "onnx"
opName: "shape_of"
inputFrameworkOpName: "Shape"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Shape"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Shape"
}
}
mappings {
frameworkName: "onnx"
opName: "random_normal"
inputFrameworkOpName: "RandomNormal"
rule {
ruleName: "listnumbertondarray"
functionName: "listnumbertondarray"
inputToOutput {
key: "input"
value: "shape"
}
ruleType: "attribute"
inputFrameworkOpName: "RandomNormal"
}
}
mappings {
frameworkName: "onnx"
opName: "hard_sigmoid"
inputFrameworkOpName: "HardSigmoid"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "HardSigmoid"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "HardSigmoid"
}
}
mappings {
frameworkName: "onnx"
opName: "noop"
inputFrameworkOpName: "Constant"
}
mappings {
frameworkName: "onnx"
opName: "cumsum"
inputFrameworkOpName: "CumSum"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "x"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "x"
}
ruleType: "tensor"
inputFrameworkOpName: "CumSum"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "exclusive"
inputIntName: "reverse"
outputIntName: "exclusive"
outputIntName: "reverse"
inputToOutput {
key: "exclusive"
value: "exclusive"
}
inputToOutput {
key: "reverse"
value: "reverse"
}
ruleType: "attribute"
inputFrameworkOpName: "CumSum"
}
rule {
ruleName: "ndarraytointattributevalue"
functionName: "ndarraytointattributevalue"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "CumSum"
}
}
mappings {
frameworkName: "onnx"
opName: "scatter_update"
inputFrameworkOpName: "ScatterElements"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
inputTensorName: "updates"
inputTensorName: "indices"
outputTensorName: "operand"
outputTensorName: "updates"
outputTensorName: "indices"
inputToOutput {
key: "operand"
value: "data"
}
inputToOutput {
key: "updates"
value: "updates"
}
inputToOutput {
key: "indices"
value: "indices"
}
ruleType: "tensor"
inputFrameworkOpName: "ScatterElements"
}
}
mappings {
frameworkName: "onnx"
opName: "gruCell"
inputFrameworkOpName: "GRU"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "R"
inputTensorName: "W"
inputTensorName: "B"
inputTensorName: "initial_h"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "Wru"
outputTensorName: "Wc"
outputTensorName: "bc"
outputTensorName: "hLast"
outputTensorName: "bru"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "Wru"
value: "R"
}
inputToOutput {
key: "Wc"
value: "W"
}
inputToOutput {
key: "bc"
value: "B"
}
inputToOutput {
key: "hLast"
value: "initial_h"
}
inputToOutput {
key: "bru"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "GRU"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_norm1"
inputFrameworkOpName: "ReduceL1"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceL1"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceL1"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceL1"
}
}
mappings {
frameworkName: "onnx"
opName: "abs"
inputFrameworkOpName: "Abs"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Abs"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Abs"
}
}
mappings {
frameworkName: "onnx"
opName: "fill"
inputFrameworkOpName: "ConstantOfShape"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "shape"
inputToOutput {
key: "shape"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "ConstantOfShape"
}
rule {
ruleName: "attributendarraytoscalarattribute"
functionName: "attributendarraytoscalarattribute"
outputDoubleName: "value"
inputTensorName: "value"
inputToOutput {
key: "value"
value: "value"
}
ruleType: "attribute"
inputFrameworkOpName: "ConstantOfShape"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "outputDataType"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "outputDataType"
argType: INT64
}
}
inputFrameworkOpName: "ConstantOfShape"
}
}
mappings {
frameworkName: "onnx"
opName: "reduce_norm2"
inputFrameworkOpName: "ReduceL2"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ReduceL2"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceL2"
}
rule {
ruleName: "listnumbertolistnumber"
functionName: "listnumbertolistnumber"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axes"
}
ruleType: "attribute"
inputFrameworkOpName: "ReduceL2"
}
}
mappings {
frameworkName: "onnx"
opName: "round"
inputFrameworkOpName: "Round"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Round"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Round"
}
}
mappings {
frameworkName: "onnx"
opName: "selu"
inputFrameworkOpName: "Selu"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Selu"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Selu"
}
}
mappings {
frameworkName: "onnx"
opName: "argmin"
inputFrameworkOpName: "ArgMin"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "ArgMin"
}
rule {
ruleName: "invertbooleannumber"
functionName: "invertbooleannumber"
inputIntName: "keepdims"
outputBooleanName: "keepDims"
inputToOutput {
key: "keepDims"
value: "keepdims"
}
ruleType: "attribute"
inputFrameworkOpName: "ArgMin"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "axis"
outputIntName: "dimensions"
inputToOutput {
key: "dimensions"
value: "axis"
}
ruleType: "attribute"
inputFrameworkOpName: "ArgMin"
}
}
mappings {
frameworkName: "onnx"
opName: "sigmoid"
inputFrameworkOpName: "Sigmoid"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Sigmoid"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sigmoid"
}
}
mappings {
frameworkName: "onnx"
opName: "avgpool2d"
inputFrameworkOpName: "AveragePool"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "isNCHW"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isNCHW"
int64Value: 1
argIndex: 10
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "dH"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "dH"
argType: INT64
argIndex: 6
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "dW"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "dW"
argType: INT64
argIndex: 7
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "extraParam0"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "extraParam0"
argType: INT64
argIndex: 9
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "stringcontains"
functionName: "stringcontains"
inputStringAttrName: "auto_pad"
outputIntName: "isSameMode"
inputFloatName: "auto_pad"
inputToOutput {
key: "isSameMode"
value: "auto_pad"
}
ruleType: "attribute"
transformerArgs {
key: "isSameMode"
transformerArgs {
name: "auto_pad"
argIndex: 8
stringValue: "SAME"
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "pH"
inputFloatName: "pads"
inputToOutput {
key: "pH"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pH"
transformerArgs {
name: "pads"
argIndex: 4
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "pW"
inputFloatName: "pads"
inputToOutput {
key: "pW"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pW"
transformerArgs {
name: "pads"
int64Value: 1
argIndex: 5
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "sH"
inputFloatName: "strides"
inputToOutput {
key: "sH"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sH"
transformerArgs {
name: "strides"
argIndex: 2
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "sW"
inputFloatName: "strides"
inputToOutput {
key: "sW"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sW"
transformerArgs {
name: "strides"
int64Value: 1
argIndex: 3
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kW"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kW"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kW"
transformerArgs {
name: "kernel_shape"
int64Value: 1
argIndex: 1
}
}
inputFrameworkOpName: "AveragePool"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kH"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kH"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kH"
transformerArgs {
name: "kernel_shape"
}
}
inputFrameworkOpName: "AveragePool"
}
}
mappings {
frameworkName: "onnx"
opName: "dropout_inverted"
inputFrameworkOpName: "Dropout"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "data"
}
ruleType: "tensor"
inputFrameworkOpName: "Dropout"
}
rule {
ruleName: "ndarrayinputtonumericalattribute"
functionName: "ndarrayinputtonumericalattribute"
outputDoubleName: "p"
inputToOutput {
key: "p"
value: "ratio"
}
ruleType: "attribute"
inputFrameworkOpName: "Dropout"
}
}
mappings {
frameworkName: "onnx"
opName: "atan"
inputFrameworkOpName: "Atan"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Atan"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Atan"
}
}
mappings {
frameworkName: "onnx"
opName: "floor"
inputFrameworkOpName: "Floor"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Floor"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Floor"
}
}
mappings {
frameworkName: "onnx"
opName: "prelu"
inputFrameworkOpName: "PRelu"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "slope"
outputTensorName: "input"
outputTensorName: "alpha"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "alpha"
value: "slope"
}
ruleType: "tensor"
inputFrameworkOpName: "PRelu"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "sharedAxes"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "sharedAxes"
int64Value: -1
argType: INT64
}
}
inputFrameworkOpName: "PRelu"
}
}
mappings {
frameworkName: "onnx"
opName: "atanh"
inputFrameworkOpName: "Atanh"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Atanh"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Atanh"
}
}
mappings {
frameworkName: "onnx"
opName: "mod"
inputFrameworkOpName: "Mod"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Mod"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Mod"
}
}
mappings {
frameworkName: "onnx"
opName: "lstmLayer"
inputFrameworkOpName: "LSTM"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "W"
inputTensorName: "R"
inputTensorName: "P"
inputTensorName: "B"
inputTensorName: "sequence_lens"
inputTensorName: "initial_h"
inputTensorName: "initial_c"
outputTensorName: "input"
outputTensorName: "Wx"
outputTensorName: "Wr"
outputTensorName: "Wp"
outputTensorName: "b"
outputTensorName: "seqLen"
outputTensorName: "hI"
outputTensorName: "cI"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "Wx"
value: "W"
}
inputToOutput {
key: "Wr"
value: "R"
}
inputToOutput {
key: "Wp"
value: "P"
}
inputToOutput {
key: "b"
value: "B"
}
inputToOutput {
key: "seqLen"
value: "sequence_lens"
}
inputToOutput {
key: "hI"
value: "initial_h"
}
inputToOutput {
key: "cI"
value: "initial_c"
}
ruleType: "tensor"
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputFloatName: "clip"
outputDoubleName: "cellClip"
inputToOutput {
key: "cellClip"
value: "clip"
}
ruleType: "attribute"
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "stringtoindex"
functionName: "stringtoindex"
inputStringAttrName: "direction"
outputIntName: "directionMode"
inputFloatName: "directionMode"
inputFloatName: "directionMode"
inputFloatName: "directionMode"
inputToOutput {
key: "directionMode"
value: "direction"
}
ruleType: "attribute"
transformerArgs {
key: "directionMode"
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "forward"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "reverse"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "bidirectional"
}
}
transformerArgs {
key: "directionMode"
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "forward"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "reverse"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "bidirectional"
}
}
transformerArgs {
key: "directionMode"
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "forward"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "reverse"
}
transformerArgs {
name: "directionMode"
argIndex: 1
stringValue: "bidirectional"
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "dataFormat"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "dataFormat"
argType: INT64
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "hasBiases"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "hasBiases"
boolValue: true
argType: BOOL
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "hasSeqLen"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "hasSeqLen"
boolValue: true
argType: BOOL
argIndex: 1
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "hasInitH"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "hasInitH"
boolValue: true
argType: BOOL
argIndex: 2
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "hasInitC"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "hasInitC"
boolValue: true
argType: BOOL
argIndex: 3
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "hasPH"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "hasPH"
boolValue: true
argType: BOOL
argIndex: 4
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "retFullSeq"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "retFullSeq"
boolValue: true
argType: BOOL
argIndex: 5
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "retLastH"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "retLastH"
boolValue: true
argType: BOOL
argIndex: 6
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "retLastC"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "retLastC"
boolValue: true
argType: BOOL
argIndex: 7
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_alpha"
outputDoubleName: "gateAlpha"
inputToOutput {
key: "gateAlpha"
value: "activation_alpha"
}
ruleType: "attribute"
transformerArgs {
key: "gateAlpha"
transformerArgs {
name: "activation_alpha"
argIndex: 1
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_alpha"
outputDoubleName: "cellAlpha"
inputToOutput {
key: "cellAlpha"
value: "activation_alpha"
}
ruleType: "attribute"
transformerArgs {
key: "cellAlpha"
transformerArgs {
name: "activation_alpha"
int64Value: 1
argIndex: 3
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_alpha"
outputDoubleName: "outAlpha"
inputToOutput {
key: "outAlpha"
value: "activation_alpha"
}
ruleType: "attribute"
transformerArgs {
key: "outAlpha"
transformerArgs {
name: "activation_alpha"
int64Value: 2
argIndex: 5
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_beta"
outputDoubleName: "gateBeta"
inputToOutput {
key: "gateBeta"
value: "activation_beta"
}
ruleType: "attribute"
transformerArgs {
key: "gateBeta"
transformerArgs {
name: "activation_beta"
argIndex: 2
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_beta"
outputDoubleName: "cellBeta"
inputToOutput {
key: "cellBeta"
value: "activation_beta"
}
ruleType: "attribute"
transformerArgs {
key: "cellBeta"
transformerArgs {
name: "activation_beta"
int64Value: 1
argIndex: 4
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputFloatName: "activation_beta"
outputDoubleName: "outBeta"
inputToOutput {
key: "outBeta"
value: "activation_beta"
}
ruleType: "attribute"
transformerArgs {
key: "outBeta"
transformerArgs {
name: "activation_beta"
int64Value: 2
argIndex: 6
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "mapstringtoindex"
functionName: "mapstringtoindex"
outputIntName: "gateAct"
inputFloatName: "Relu"
inputFloatName: "Tanh"
inputFloatName: "Sigmoid"
inputFloatName: "Affine"
inputFloatName: "LeakyRelu"
inputFloatName: "ThresholdedRelu"
inputFloatName: "ScaledTanh"
inputFloatName: "HardSigmoid"
inputFloatName: "Elu"
inputFloatName: "Softsign"
inputFloatName: "Softplus"
inputFloatName: "index"
inputToOutput {
key: "gateAct"
value: "activations"
}
ruleType: "attribute"
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "gateAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 2
}
transformerArgs {
name: "Tanh"
argIndex: 2
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 2
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 2
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 2
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 2
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 2
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 2
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 2
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 2
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 2
}
}
transformerArgs {
key: "index"
transformerArgs {
name: "index"
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "mapstringtoindex"
functionName: "mapstringtoindex"
outputIntName: "cellAct"
inputFloatName: "Relu"
inputFloatName: "Tanh"
inputFloatName: "Sigmoid"
inputFloatName: "Affine"
inputFloatName: "LeakyRelu"
inputFloatName: "ThresholdedRelu"
inputFloatName: "ScaledTanh"
inputFloatName: "HardSigmoid"
inputFloatName: "Elu"
inputFloatName: "Softsign"
inputFloatName: "Softplus"
inputFloatName: "index"
inputToOutput {
key: "cellAct"
value: "activations"
}
ruleType: "attribute"
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "cellAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "Tanh"
argIndex: 3
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 3
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 3
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 3
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 3
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 3
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 3
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 3
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 3
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 3
}
}
transformerArgs {
key: "index"
transformerArgs {
name: "index"
int64Value: 1
}
}
inputFrameworkOpName: "LSTM"
}
rule {
ruleName: "mapstringtoindex"
functionName: "mapstringtoindex"
outputIntName: "outAct"
inputFloatName: "Relu"
inputFloatName: "Tanh"
inputFloatName: "Sigmoid"
inputFloatName: "Affine"
inputFloatName: "LeakyRelu"
inputFloatName: "ThresholdedRelu"
inputFloatName: "ScaledTanh"
inputFloatName: "HardSigmoid"
inputFloatName: "Elu"
inputFloatName: "Softsign"
inputFloatName: "Softplus"
inputFloatName: "index"
inputToOutput {
key: "outAct"
value: "activations"
}
ruleType: "attribute"
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "outAct"
transformerArgs {
name: "Relu"
int64Value: 1
argIndex: 4
}
transformerArgs {
name: "Tanh"
argIndex: 4
}
transformerArgs {
name: "Sigmoid"
int64Value: 2
argIndex: 4
}
transformerArgs {
name: "Affine"
int64Value: 3
argIndex: 4
}
transformerArgs {
name: "LeakyRelu"
int64Value: 4
argIndex: 4
}
transformerArgs {
name: "ThresholdedRelu"
int64Value: 5
argIndex: 4
}
transformerArgs {
name: "ScaledTanh"
int64Value: 6
argIndex: 4
}
transformerArgs {
name: "HardSigmoid"
int64Value: 7
argIndex: 4
}
transformerArgs {
name: "Elu"
int64Value: 8
argIndex: 4
}
transformerArgs {
name: "Softsign"
int64Value: 9
argIndex: 4
}
transformerArgs {
name: "Softplus"
int64Value: 10
argIndex: 4
}
}
transformerArgs {
key: "index"
transformerArgs {
name: "index"
int64Value: 2
}
}
inputFrameworkOpName: "LSTM"
}
}
mappings {
frameworkName: "onnx"
opName: "cos"
inputFrameworkOpName: "Cos"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Cos"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Cos"
}
}
mappings {
frameworkName: "onnx"
opName: "sqrt"
inputFrameworkOpName: "Sqrt"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Sqrt"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sqrt"
}
}
mappings {
frameworkName: "onnx"
opName: "asin"
inputFrameworkOpName: "Asin"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Asin"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Asin"
}
}
mappings {
frameworkName: "onnx"
opName: "space_to_depth"
inputFrameworkOpName: "SpaceToDepth"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "SpaceToDepth"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "blocksize"
outputIntName: "block_size"
inputToOutput {
key: "block_size"
value: "blocksize"
}
ruleType: "attribute"
inputFrameworkOpName: "SpaceToDepth"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "isNHWC"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isNHWC"
int64Value: 1
argType: INT64
argIndex: 1
}
}
inputFrameworkOpName: "SpaceToDepth"
}
}
mappings {
frameworkName: "onnx"
opName: "tile"
inputFrameworkOpName: "Tile"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
inputTensorName: "repeats"
outputTensorName: "input"
outputTensorName: "reps_vector"
inputToOutput {
key: "input"
value: "input"
}
inputToOutput {
key: "reps_vector"
value: "repeats"
}
ruleType: "tensor"
inputFrameworkOpName: "Tile"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "is_static_reps"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "is_static_reps"
boolValue: true
argType: BOOL
}
}
inputFrameworkOpName: "Tile"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "dimensions"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "dimensions"
argType: INT64
}
}
inputFrameworkOpName: "Tile"
}
}
mappings {
frameworkName: "onnx"
opName: "greater_equal"
inputFrameworkOpName: "GreaterOrEqual"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "GreaterOrEqual"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "GreaterOrEqual"
}
}
mappings {
frameworkName: "onnx"
opName: "depth_to_space"
inputFrameworkOpName: "DepthToSpace"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "DepthToSpace"
}
rule {
ruleName: "valuemapping"
functionName: "valuemapping"
inputIntName: "blocksize"
outputIntName: "block_size"
inputToOutput {
key: "block_size"
value: "blocksize"
}
ruleType: "attribute"
inputFrameworkOpName: "DepthToSpace"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "isNHWC"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isNHWC"
int64Value: 1
argType: INT64
argIndex: 1
}
}
inputFrameworkOpName: "DepthToSpace"
}
}
mappings {
frameworkName: "onnx"
opName: "isnan"
inputFrameworkOpName: "IsNaN"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "IsNaN"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "IsNaN"
}
}
mappings {
frameworkName: "onnx"
opName: "divide"
inputFrameworkOpName: "Div"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Div"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Div"
}
}
mappings {
frameworkName: "onnx"
opName: "neg"
inputFrameworkOpName: "Neg"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Neg"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Neg"
}
}
mappings {
frameworkName: "onnx"
opName: "matrix_determinant"
inputFrameworkOpName: "Det"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "X"
}
ruleType: "tensor"
inputFrameworkOpName: "Det"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Det"
}
}
mappings {
frameworkName: "onnx"
opName: "pad"
inputFrameworkOpName: "Pad"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "data"
inputTensorName: "pads"
outputTensorName: "input"
outputTensorName: "paddings"
inputToOutput {
key: "input"
value: "data"
}
inputToOutput {
key: "paddings"
value: "pads"
}
ruleType: "tensor"
inputFrameworkOpName: "Pad"
}
rule {
ruleName: "stringtoindex"
functionName: "stringtoindex"
inputStringAttrName: "mode"
outputIntName: "mode"
inputFloatName: "mode"
inputFloatName: "mode"
inputFloatName: "mode"
inputToOutput {
key: "mode"
value: "mode"
}
ruleType: "attribute"
transformerArgs {
key: "mode"
transformerArgs {
name: "mode"
stringValue: "constant"
}
transformerArgs {
name: "mode"
stringValue: "reflect"
}
transformerArgs {
name: "mode"
stringValue: "edge"
}
}
transformerArgs {
key: "mode"
transformerArgs {
name: "mode"
stringValue: "constant"
}
transformerArgs {
name: "mode"
stringValue: "reflect"
}
transformerArgs {
name: "mode"
stringValue: "edge"
}
}
transformerArgs {
key: "mode"
transformerArgs {
name: "mode"
stringValue: "constant"
}
transformerArgs {
name: "mode"
stringValue: "reflect"
}
transformerArgs {
name: "mode"
stringValue: "edge"
}
}
inputFrameworkOpName: "Pad"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputFloatName: "padValue"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "padValue"
argType: DOUBLE
}
}
inputFrameworkOpName: "Pad"
}
}
mappings {
frameworkName: "onnx"
opName: "conv2d"
inputFrameworkOpName: "Conv"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "X"
inputTensorName: "W"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "weights"
outputTensorName: "bias"
inputToOutput {
key: "input"
value: "X"
}
inputToOutput {
key: "weights"
value: "W"
}
inputToOutput {
key: "bias"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "isNCHW"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "isNCHW"
argType: INT64
argIndex: 9
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputIntName: "wFormat"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "wFormat"
int64Value: 1
argType: INT64
argIndex: 10
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "stringequals"
functionName: "stringequals"
inputStringAttrName: "auto_pad"
outputIntName: "isSameMode"
inputFloatName: "auto_pad"
inputToOutput {
key: "isSameMode"
value: "auto_pad"
}
ruleType: "attribute"
transformerArgs {
key: "isSameMode"
transformerArgs {
name: "auto_pad"
argIndex: 8
stringValue: "SAME"
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "dH"
outputIntName: "dH"
inputFloatName: "dilations"
inputToOutput {
key: "dH"
value: "dilations"
}
ruleType: "attribute"
transformerArgs {
key: "dH"
transformerArgs {
name: "dilations"
argIndex: 6
}
transformerArgs {
name: "dH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
transformerArgs {
key: "dH"
transformerArgs {
name: "dilations"
argIndex: 6
}
transformerArgs {
name: "dH"
int64Value: 1
argType: INT64
argIndex: 6
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "dW"
outputIntName: "dW"
inputFloatName: "dilations"
inputToOutput {
key: "dW"
value: "dilations"
}
ruleType: "attribute"
transformerArgs {
key: "dW"
transformerArgs {
name: "dilations"
int64Value: 1
argIndex: 7
}
transformerArgs {
name: "dW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
transformerArgs {
key: "dW"
transformerArgs {
name: "dilations"
int64Value: 1
argIndex: 7
}
transformerArgs {
name: "dW"
int64Value: 1
argType: INT64
argIndex: 7
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "pH"
inputFloatName: "pads"
inputToOutput {
key: "pH"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pH"
transformerArgs {
name: "pads"
argIndex: 4
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "pW"
inputFloatName: "pads"
inputToOutput {
key: "pW"
value: "pads"
}
ruleType: "attribute"
transformerArgs {
key: "pW"
transformerArgs {
name: "pads"
int64Value: 1
argIndex: 5
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "strides"
outputIntName: "sH"
inputFloatName: "strides"
inputToOutput {
key: "sH"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sH"
transformerArgs {
name: "strides"
argIndex: 2
}
transformerArgs {
name: "strides"
int64Value: 1
argType: INT64
argIndex: 2
}
}
transformerArgs {
key: "sH"
transformerArgs {
name: "strides"
argIndex: 2
}
transformerArgs {
name: "strides"
int64Value: 1
argType: INT64
argIndex: 2
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
inputIntName: "strides"
outputIntName: "sW"
inputFloatName: "strides"
inputToOutput {
key: "sW"
value: "strides"
}
ruleType: "attribute"
transformerArgs {
key: "sW"
transformerArgs {
name: "strides"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "strides"
int64Value: 1
argType: INT64
argIndex: 3
}
}
transformerArgs {
key: "sW"
transformerArgs {
name: "strides"
int64Value: 1
argIndex: 3
}
transformerArgs {
name: "strides"
int64Value: 1
argType: INT64
argIndex: 3
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kW"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kW"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kW"
transformerArgs {
name: "kernel_shape"
int64Value: 1
}
}
inputFrameworkOpName: "Conv"
}
rule {
ruleName: "listattributevaluelookuptoindex"
functionName: "listattributevaluelookuptoindex"
outputIntName: "kH"
inputFloatName: "kernel_shape"
inputToOutput {
key: "kH"
value: "kernel_shape"
}
ruleType: "attribute"
transformerArgs {
key: "kH"
transformerArgs {
name: "kernel_shape"
argIndex: 1
}
}
inputFrameworkOpName: "Conv"
}
}
mappings {
frameworkName: "onnx"
opName: "greater"
inputFrameworkOpName: "Greater"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "A"
inputTensorName: "B"
outputTensorName: "input"
outputTensorName: "y"
inputToOutput {
key: "input"
value: "A"
}
inputToOutput {
key: "y"
value: "B"
}
ruleType: "tensor"
inputFrameworkOpName: "Greater"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Greater"
}
}
mappings {
frameworkName: "onnx"
opName: "sign"
inputFrameworkOpName: "Sign"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Sign"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Sign"
}
}
mappings {
frameworkName: "onnx"
opName: "softsign"
inputFrameworkOpName: "Softsign"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Softsign"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Softsign"
}
}
mappings {
frameworkName: "onnx"
opName: "exp"
inputFrameworkOpName: "Exp"
rule {
ruleName: "ndarraymapping"
functionName: "ndarraymapping"
inputTensorName: "input"
outputTensorName: "input"
inputToOutput {
key: "input"
value: "input"
}
ruleType: "tensor"
inputFrameworkOpName: "Exp"
}
rule {
ruleName: "argdescriptorconstant"
functionName: "argdescriptorconstant"
inputBooleanName: "inPlace"
ruleType: "attribute"
transformerArgs {
key: "value"
transformerArgs {
name: "inPlace"
argType: BOOL
}
}
inputFrameworkOpName: "Exp"
}
}