185 lines
9.2 KiB
C++
185 lines
9.2 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/top_k.h>
|
|
#include <ops/declarable/headers/parity_ops.h>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static int topKFunctor_(const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort) {
|
|
Nd4jLong width = input->sizeAt(-1);
|
|
int lastDim = input->rankOf() - 1;
|
|
// ----------------------------------------------------------------------------------------------- //
|
|
// this assumption is right:
|
|
// if (values->lengthOf() != k * lastDimList->size()) {
|
|
// nd4j_printf("top_k: something is wrong. %i expected, but %i given.\n",
|
|
// values->lengthOf(), k * lastDimList->size());
|
|
// }
|
|
// ----------------------------------------------------------------------------------------------- //
|
|
std::vector<int> dimsToExclude(input->rankOf() - 1);
|
|
for (size_t d = 0; d < dimsToExclude.size(); ++d)
|
|
dimsToExclude[d] = d;
|
|
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input->getShapeInfo(), dimsToExclude);
|
|
|
|
if (k == 1) {
|
|
for (Nd4jLong e = 0; e < numOfSubArrs; ++e) {
|
|
auto trial = (*input)(e, dimsToExclude);
|
|
//int maxPos = //lastDimList->at(e)->argMax();
|
|
Nd4jLong maxPos = 0;
|
|
//trial.printIndexedBuffer("TRIAL:");
|
|
T maxVal = trial.e<T>(0);
|
|
for (Nd4jLong pos = 1; pos < trial.lengthOf(); pos++)
|
|
if (maxVal < trial.e<T>(pos)) {
|
|
maxPos = pos;
|
|
maxVal = trial.e<T>(pos);
|
|
}
|
|
if (indices)
|
|
indices->p(e, maxPos); //topIndex;
|
|
if (values)
|
|
values->p(e, maxVal);
|
|
}
|
|
}
|
|
else {
|
|
int nextPos = 0;
|
|
|
|
for (Nd4jLong e = 0; e < numOfSubArrs; ++e) {
|
|
auto trial = (*input)(e, dimsToExclude);
|
|
|
|
// fill up the first k elements
|
|
NDArray topValues = NDArrayFactory::create<T>('c', {k}, input->getContext());
|
|
NDArray sortedVals = NDArrayFactory::create<T>('c', {k}, input->getContext());
|
|
NDArray topIndices = NDArrayFactory::create<Nd4jLong>('c', {k}, input->getContext());
|
|
for (uint pos = 0; pos < k; ++pos) {
|
|
topIndices.t<Nd4jLong>(pos) = pos;
|
|
topValues.t<T>(pos) = trial.t<T>(pos);
|
|
}
|
|
//std::vector<T> sortedVals(topValues);
|
|
sortedVals.assign(topValues);// = NDArrayFactory::create<T>('c', {k});
|
|
//std::sort(sortedVals.begin(), sortedVals.end()); // sorted in ascending order
|
|
SpecialMethods<T>::sortGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), false);
|
|
for (Nd4jLong i = static_cast<Nd4jLong>(k); i < width; ++i) {
|
|
T val = trial.e<T>(i);
|
|
T minTopVal = sortedVals.t<T>(0);
|
|
if (minTopVal < val) { // value should be inserted to top k
|
|
// only if it is not contained in
|
|
T* begin = reinterpret_cast<T*>(sortedVals.buffer());
|
|
T* end = begin + k;
|
|
bool exists = std::binary_search(begin, end, val);
|
|
if (!exists) {
|
|
//exchangePos - a distance between begin and minimal existed to be suppressed by val
|
|
T* topBegin = reinterpret_cast<T*>(topValues.buffer());
|
|
T* topEnd = topBegin + k;
|
|
auto exchangePos = std::distance(topBegin, std::find(topBegin, topEnd, sortedVals.t<T>(0)));
|
|
topValues.t<T>(exchangePos) = val; //*exchangeIt = val;
|
|
topIndices.t<Nd4jLong>(exchangePos) = i;
|
|
sortedVals.t<T>(0) = val; // suppress in sorted
|
|
//std::sort(sortedVals.begin(), sortedVals.end()); // sorted in ascending order
|
|
SpecialMethods<T>::sortGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), false);
|
|
}
|
|
}
|
|
}
|
|
if (needSort) {
|
|
SpecialMethods<T>::sortGeneric(topValues.buffer(), topValues.shapeInfo(), true);
|
|
|
|
for (Nd4jLong j = 0; j < width; j++)
|
|
for (uint pos = 0; pos < k; ++pos)
|
|
if (topValues.t<T>(pos) == trial.t<T>(j))
|
|
topIndices.t<Nd4jLong>(pos) = j;
|
|
}
|
|
else { // else sort by indices
|
|
std::map<Nd4jLong, T> sortValsMap;
|
|
//std::vector<std::pair<int, T>> data(topValues.lengthOf());
|
|
for (Nd4jLong e = 0; e < topValues.lengthOf(); ++e) {
|
|
sortValsMap[topIndices.t<Nd4jLong>(e)] = topValues.t<T>(e);
|
|
}
|
|
|
|
//std::sort(data.begin(), data.end(), [](std::pair<int, T> const& a, std::pair<int, T> const& b) {
|
|
// return a.first < b.first;
|
|
//});
|
|
Nd4jLong e = 0;
|
|
for (auto it = sortValsMap.begin(); it != sortValsMap.end(); ++it, e++) {
|
|
topIndices.t<Nd4jLong>(e) = it->first;
|
|
topValues.t<T>(e) = it->second;
|
|
}
|
|
|
|
}
|
|
if (values)
|
|
(*values)(e, dimsToExclude).assign(topValues);
|
|
if (indices)
|
|
(*indices)(e, dimsToExclude).assign(topIndices);
|
|
}
|
|
//indices->printIndexedBuffer("Indices as is");
|
|
}
|
|
return Status::OK();
|
|
}
|
|
// ----------------------------------------------------------------------------------------------- //
|
|
|
|
template <typename T>
|
|
static int inTopKFunctor_(sd::LaunchContext* context, const NDArray* input, const NDArray* target, NDArray* result, const uint k) {
|
|
|
|
std::vector<Nd4jLong> shapeI(input->rankOf());
|
|
for (int i = 0; i < input->rankOf() - 1; i++)
|
|
shapeI[i] = input->sizeAt(i);
|
|
shapeI[input->rankOf() - 1] = k;
|
|
std::unique_ptr<NDArray> indices(NDArrayFactory::create_<Nd4jLong>(input->ordering(), shapeI, context));
|
|
NDArray* values = nullptr;
|
|
int status = topKFunctor(context, input, values, indices.get(), k, true);
|
|
result->assign(0);
|
|
if (status == ND4J_STATUS_OK) {
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
bool found = false;
|
|
for (uint j = 0; j < k; j++) {
|
|
if (target->e<Nd4jLong>(e) == indices->e<Nd4jLong>(e * k + j)) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
result->p<bool>(e, true);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, target->lengthOf());
|
|
}
|
|
return status;
|
|
|
|
}
|
|
|
|
int topKFunctor(sd::LaunchContext * context, const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return topKFunctor_, (input, values, indices, k, needSort), NUMERIC_TYPES);
|
|
}
|
|
|
|
int inTopKFunctor(sd::LaunchContext * context, const NDArray* input, const NDArray* target, NDArray* result, const uint k) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return inTopKFunctor_, (context, input, target, result, k), NUMERIC_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template int topKFunctor_, (const NDArray* input, NDArray* values, NDArray* indices, const uint k, bool needSort), NUMERIC_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template int inTopKFunctor_, (sd::LaunchContext * context, const NDArray* input, const NDArray* target, NDArray* result, const uint k), NUMERIC_TYPES);
|
|
}
|
|
}
|
|
}
|