Alex Black 29104083cc
Various fixes (#143)
* #8568 ArrayUtil optimization

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6171 Keras ReLU and ELU support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Keras softmax layer import

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8549 Webjars dependency management

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for TF import names ':0' suffix issue / NPE

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* BiasAdd: fix default data format for TF import

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Update zoo test ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8509 SameDiff Listener API - provide frame + iteration

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8520 ND4J Environment

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Deconv3d

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Deconv3d fixes + gradient check

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Conv3d fixes + deconv3d DType test

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix issue with deconv3d gradinet check weight init

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8579 Fix BaseCudaDataBuffer constructor fix for UINT16

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DataType.isNumerical() returns false for BOOL type

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8504 Reduce Spark log spam for tests

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Clean up DL4J gradient check test spam

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* More Gradient check spam reduction

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff test spam reduction

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes for FlatBuffers mapping

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff log spam cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tests should extend BaseNd4jTest

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove debug line in c++ op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ND4J test spam cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J test spam reduction

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* More Dl4J and datavec test spam cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for bad conv3d test

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Additional test

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Embedding layers: don't inherit global default activation function

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Trigger CI

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Consolidate all BaseDL4JTest classes to single class used everywhere; make timeout configurable per class

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Test fixes and timeout increases

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Timeouts and PReLU fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Restore libnd4j build threads arg for CUDA build

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Increase timeouts on a few tests to avoid spurious failures on some CI machines

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* More timeout fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* More test timeout fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweak timeout for one more test

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Final tweaks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* One more ignore

Signed-off-by: AlexDBlack <blacka101@gmail.com>
2020-01-04 13:45:07 +11:00

214 lines
8.3 KiB
Java

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.util;
import org.apache.commons.io.FileUtils;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.PoolingType;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.junit.After;
import org.junit.Rule;
import org.junit.Test;
import org.junit.rules.TemporaryFolder;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.learning.config.NoOp;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.io.File;
import static org.junit.Assert.*;
public class CrashReportingUtilTest extends BaseDL4JTest {
@Override
public long getTimeoutMilliseconds() {
return 120000;
}
@Rule
public TemporaryFolder testDir = new TemporaryFolder();
@Override
public DataType getDataType(){
return DataType.FLOAT;
}
@After
public void after(){
//Reset dir
CrashReportingUtil.crashDumpOutputDirectory(null);
}
@Test
public void test() throws Exception {
File dir = testDir.newFolder();
CrashReportingUtil.crashDumpOutputDirectory(dir);
int kernel = 2;
int stride = 1;
int padding = 0;
PoolingType poolingType = PoolingType.MAX;
int inputDepth = 1;
int height = 28;
int width = 28;
MultiLayerConfiguration conf =
new NeuralNetConfiguration.Builder().updater(new NoOp())
.dist(new NormalDistribution(0, 1))
.list().layer(0,
new ConvolutionLayer.Builder()
.kernelSize(kernel, kernel)
.stride(stride, stride)
.padding(padding, padding)
.nIn(inputDepth)
.nOut(3).build())
.layer(1, new SubsamplingLayer.Builder(poolingType)
.kernelSize(kernel, kernel)
.stride(stride, stride)
.padding(padding, padding)
.build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX)
.nOut(10).build())
.setInputType(InputType.convolutionalFlat(height, width,
inputDepth))
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
net.addListeners(new ScoreIterationListener(1));
//Test net that hasn't been trained yet
Exception e = new Exception();
CrashReportingUtil.writeMemoryCrashDump(net, e);
File[] list = dir.listFiles();
assertNotNull(list);
assertEquals(1, list.length);
String str = FileUtils.readFileToString(list[0]);
// System.out.println(str);
assertTrue(str.contains("Network Information"));
assertTrue(str.contains("Layer Helpers"));
assertTrue(str.contains("JavaCPP"));
assertTrue(str.contains("ScoreIterationListener"));
//Train:
DataSetIterator iter = new EarlyTerminationDataSetIterator(new MnistDataSetIterator(32, true, 12345), 5);
net.fit(iter);
dir = testDir.newFolder();
CrashReportingUtil.crashDumpOutputDirectory(dir);
CrashReportingUtil.writeMemoryCrashDump(net, e);
list = dir.listFiles();
assertNotNull(list);
assertEquals(1, list.length);
str = FileUtils.readFileToString(list[0]);
assertTrue(str.contains("Network Information"));
assertTrue(str.contains("Layer Helpers"));
assertTrue(str.contains("JavaCPP"));
assertTrue(str.contains("ScoreIterationListener(1)"));
// System.out.println("///////////////////////////////////////////////////////////");
// System.out.println(str);
// System.out.println("///////////////////////////////////////////////////////////");
//Also test manual memory info
String mlnMemoryInfo = net.memoryInfo(32, InputType.convolutionalFlat(28, 28, 1));
// System.out.println("///////////////////////////////////////////////////////////");
// System.out.println(mlnMemoryInfo);
// System.out.println("///////////////////////////////////////////////////////////");
assertTrue(mlnMemoryInfo.contains("Network Information"));
assertTrue(mlnMemoryInfo.contains("Layer Helpers"));
assertTrue(mlnMemoryInfo.contains("JavaCPP"));
assertTrue(mlnMemoryInfo.contains("ScoreIterationListener(1)"));
////////////////////////////////////////
//Same thing on ComputationGraph:
dir = testDir.newFolder();
CrashReportingUtil.crashDumpOutputDirectory(dir);
ComputationGraph cg = net.toComputationGraph();
cg.setListeners(new ScoreIterationListener(1));
//Test net that hasn't been trained yet
CrashReportingUtil.writeMemoryCrashDump(cg, e);
list = dir.listFiles();
assertNotNull(list);
assertEquals(1, list.length);
str = FileUtils.readFileToString(list[0]);
assertTrue(str.contains("Network Information"));
assertTrue(str.contains("Layer Helpers"));
assertTrue(str.contains("JavaCPP"));
assertTrue(str.contains("ScoreIterationListener(1)"));
//Train:
cg.fit(iter);
dir = testDir.newFolder();
CrashReportingUtil.crashDumpOutputDirectory(dir);
CrashReportingUtil.writeMemoryCrashDump(cg, e);
list = dir.listFiles();
assertNotNull(list);
assertEquals(1, list.length);
str = FileUtils.readFileToString(list[0]);
assertTrue(str.contains("Network Information"));
assertTrue(str.contains("Layer Helpers"));
assertTrue(str.contains("JavaCPP"));
assertTrue(str.contains("ScoreIterationListener(1)"));
// System.out.println("///////////////////////////////////////////////////////////");
// System.out.println(str);
// System.out.println("///////////////////////////////////////////////////////////");
//Also test manual memory info
String cgMemoryInfo = cg.memoryInfo(32, InputType.convolutionalFlat(28, 28, 1));
// System.out.println("///////////////////////////////////////////////////////////");
// System.out.println(cgMemoryInfo);
// System.out.println("///////////////////////////////////////////////////////////");
assertTrue(cgMemoryInfo.contains("Network Information"));
assertTrue(cgMemoryInfo.contains("Layer Helpers"));
assertTrue(cgMemoryInfo.contains("JavaCPP"));
assertTrue(cgMemoryInfo.contains("ScoreIterationListener(1)"));
}
}