229 lines
8.5 KiB
C++
229 lines
8.5 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
|
|
// @author AbdelRauf (rauf@konduit.ai)
|
|
//
|
|
|
|
#include <ops/declarable/helpers/adjust_hue.h>
|
|
#include <ops/declarable/helpers/imagesHelpers.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static void rgbToGrs_(const NDArray& input, NDArray& output, const int dimC) {
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
const int rank = input.rankOf();
|
|
|
|
if(dimC == rank - 1 && 'c' == input.ordering() && 1 == input.ews() &&
|
|
'c' == output.ordering() && 1 == output.ews()){
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto i = start; i < stop; i += increment) {
|
|
const auto xStep = i*3;
|
|
z[i] = 0.2989f*x[xStep] + 0.5870f*x[xStep + 1] + 0.1140f*x[xStep + 2];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, output.lengthOf(), 1);
|
|
return;
|
|
}
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
for (auto i = start; i < stop; i += increment) {
|
|
shape::index2coords(i, output.getShapeInfo(), coords);
|
|
const auto zOffset = shape::getOffset(output.getShapeInfo(), coords);
|
|
const auto xOffset0 = shape::getOffset(input.getShapeInfo(), coords);
|
|
const auto xOffset1 = xOffset0 + input.strideAt(dimC);
|
|
const auto xOffset2 = xOffset1 + input.strideAt(dimC);
|
|
z[zOffset] = 0.2989f*x[xOffset0] + 0.5870f*x[xOffset1] + 0.1140f*x[xOffset2];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, output.lengthOf(), 1);
|
|
return;
|
|
}
|
|
|
|
void transformRgbGrs(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToGrs_, (input, output, dimC), NUMERIC_TYPES);
|
|
}
|
|
|
|
|
|
template <typename T, typename Op>
|
|
FORCEINLINE static void tripleTransformer(const NDArray* input, NDArray* output, const int dimC, Op op) {
|
|
|
|
const int rank = input->rankOf();
|
|
|
|
const T* x = input->bufferAsT<T>();
|
|
T* z = output->bufferAsT<T>();
|
|
|
|
if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') {
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto i = start; i < stop; i += increment) {
|
|
op(x[i], x[i + 1], x[i + 2], z[i], z[i + 1], z[i + 2]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3);
|
|
}
|
|
else {
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
const Nd4jLong xDimCstride = input->stridesOf()[dimC];
|
|
const Nd4jLong zDimCstride = output->stridesOf()[dimC];
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto i = start; i < stop; i += increment) {
|
|
const T* xTad = x + packX.platformOffsets()[i];
|
|
T* zTad = z + packZ.platformOffsets()[i];
|
|
op(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
|
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void tripleTransformer(const NDArray* input, NDArray* output, const int dimC , T (&tr)[3][3] ) {
|
|
|
|
const int rank = input->rankOf();
|
|
|
|
const T* x = input->bufferAsT<T>();
|
|
T* z = output->bufferAsT<T>();
|
|
// TODO: Use tensordot or other optimizied helpers to see if we can get better performance.
|
|
|
|
if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') {
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto i = start; i < stop; i += increment) {
|
|
//simple M*v //tr.T*v.T // v * tr //rule: (AB)' =B'A'
|
|
// v.shape (1,3) row vector
|
|
T x0, x1, x2;
|
|
x0 = x[i]; //just additional hint
|
|
x1 = x[i + 1];
|
|
x2 = x[i + 2];
|
|
z[i] = x0 * tr[0][0] + x1 * tr[1][0] + x2 * tr[2][0];
|
|
z[i+1] = x0 * tr[0][1] + x1 * tr[1][1] + x2 * tr[2][1];
|
|
z[i+2] = x0 * tr[0][2] + x1 * tr[1][2] + x2 * tr[2][2];
|
|
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3);
|
|
}
|
|
else {
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
const Nd4jLong xDimCstride = input->stridesOf()[dimC];
|
|
const Nd4jLong zDimCstride = output->stridesOf()[dimC];
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
for (auto i = start; i < stop; i += increment) {
|
|
const T* xTad = x + packX.platformOffsets()[i];
|
|
T* zTad = z + packZ.platformOffsets()[i];
|
|
//simple M*v //tr.T*v
|
|
T x0, x1, x2;
|
|
x0 = xTad[0];
|
|
x1 = xTad[xDimCstride];
|
|
x2 = xTad[2 * xDimCstride];
|
|
zTad[0] = x0 * tr[0][0] + x1 * tr[1][0] + x2 * tr[2][0];
|
|
zTad[zDimCstride] = x0 * tr[0][1] + x1 * tr[1][1] + x2 * tr[2][1];
|
|
zTad[2 * zDimCstride] = x0 * tr[0][2] + x1 * tr[1][2] + x2 * tr[2][2];
|
|
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void hsvRgb(const NDArray* input, NDArray* output, const int dimC) {
|
|
auto op = nd4j::ops::helpers::hsvToRgb<T>;
|
|
return tripleTransformer<T>(input, output, dimC, op);
|
|
}
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void rgbHsv(const NDArray* input, NDArray* output, const int dimC) {
|
|
auto op = nd4j::ops::helpers::rgbToHsv<T>;
|
|
return tripleTransformer<T>(input, output, dimC, op);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void rgbYiq(const NDArray* input, NDArray* output, const int dimC) {
|
|
T arr[3][3] = {
|
|
{ (T)0.299, (T)0.59590059, (T)0.2115 },
|
|
{ (T)0.587, (T)-0.27455667, (T)-0.52273617 },
|
|
{ (T)0.114, (T)-0.32134392, (T)0.31119955 }
|
|
};
|
|
return tripleTransformer<T>(input, output, dimC, arr);
|
|
}
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void yiqRgb(const NDArray* input, NDArray* output, const int dimC) {
|
|
//TODO: this operation does not use the clamp operation, so there is a possibility being out of range.
|
|
//Justify that it will not be out of range for images data
|
|
T arr[3][3] = {
|
|
{ (T)1, (T)1, (T)1 },
|
|
{ (T)0.95598634, (T)-0.27201283, (T)-1.10674021 },
|
|
{ (T)0.6208248, (T)-0.64720424, (T)1.70423049 }
|
|
};
|
|
return tripleTransformer<T>(input, output, dimC, arr);
|
|
}
|
|
|
|
|
|
|
|
void transformHsvRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), hsvRgb, (input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
void transformRgbHsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), rgbHsv, (input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
void transformYiqRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), yiqRgb, (input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
void transformRgbYiq(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), rgbYiq, (input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
} |