Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

87 lines
3.5 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 03.09.2018
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_broadcast_to)
#include <ops/declarable/headers/shape.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(broadcast_to, 2, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto shape = INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
const int inputRank = input->rankOf();
const int shapeRank = shape->rankOf();
const Nd4jLong shapeLen = shape->lengthOf();
REQUIRE_TRUE(shapeRank <= 1, 0, "BROADCAST_TO op: rank of shape array should be <= 1, bot got %i instead !", shapeRank);
REQUIRE_TRUE(inputRank <= shapeLen, 0, "BROADCAST_TO op: rank of input shape array should be <= length of shape array, bot got %i and %i correspondingly !", inputRank, shapeLen);
std::vector<Nd4jLong > shapeBuff = shape->getBufferAsVector<Nd4jLong>();
std::vector<Nd4jLong> outShape(shapeBuff.begin(), shapeBuff.end());
for(int i = 1; i <= inputRank; ++i)
REQUIRE_TRUE(input->sizeAt(inputRank-i) == outShape[shapeLen-i] || input->sizeAt(inputRank-i) == 1, 0, "BROADCAST_TO op: shape of input array %s can't be broadcasted to the shape %s !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
input->tile(*output);
return Status::OK();
}
DECLARE_TYPES(broadcast_to) {
getOpDescriptor()
->setAllowedInputTypes(DataType::ANY)
->setSameMode(true);
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(broadcast_to) {
auto inputShapeInfo = inputShape->at(0);
auto shape = INPUT_VARIABLE(1);
const int inputRank = inputShapeInfo[0];
const int shapeRank = shape->rankOf();
const Nd4jLong shapeLen = shape->lengthOf();
REQUIRE_TRUE(shapeRank <= 1, 0, "BROADCAST_TO op: rank of input shape array should be <= 1, bit got %i instead !", shapeRank);
REQUIRE_TRUE(inputRank <= shapeLen, 0, "BROADCAST_TO op: rank of input shape array should be <= length of shape array, bot got %i and %i correspondingly !", inputRank, shapeLen);
std::vector<Nd4jLong> shapeBuff = shape->getBufferAsVector<Nd4jLong>();
std::vector<Nd4jLong> outShape(shapeBuff.begin(), shapeBuff.end());
for(int i = 1; i <= inputRank; ++i)
REQUIRE_TRUE(inputShapeInfo[inputRank+1-i] == outShape[shapeLen-i] || inputShapeInfo[inputRank+1-i] == 1, 0, "BROADCAST_TO op: shape of input array %s can't be broadcasted to the shape %s !", ShapeUtils::shapeAsString(inputShapeInfo).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
auto outShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inputShapeInfo), shape::order(inputShapeInfo), outShape);
return SHAPELIST(outShapeInfo);
}
}
}
#endif