* correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
87 lines
3.5 KiB
C++
87 lines
3.5 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 03.09.2018
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_broadcast_to)
|
|
|
|
#include <ops/declarable/headers/shape.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
|
|
|
|
CUSTOM_OP_IMPL(broadcast_to, 2, 1, false, 0, 0) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto shape = INPUT_VARIABLE(1);
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
const int inputRank = input->rankOf();
|
|
const int shapeRank = shape->rankOf();
|
|
const Nd4jLong shapeLen = shape->lengthOf();
|
|
|
|
REQUIRE_TRUE(shapeRank <= 1, 0, "BROADCAST_TO op: rank of shape array should be <= 1, bot got %i instead !", shapeRank);
|
|
REQUIRE_TRUE(inputRank <= shapeLen, 0, "BROADCAST_TO op: rank of input shape array should be <= length of shape array, bot got %i and %i correspondingly !", inputRank, shapeLen);
|
|
|
|
std::vector<Nd4jLong > shapeBuff = shape->getBufferAsVector<Nd4jLong>();
|
|
std::vector<Nd4jLong> outShape(shapeBuff.begin(), shapeBuff.end());
|
|
|
|
for(int i = 1; i <= inputRank; ++i)
|
|
REQUIRE_TRUE(input->sizeAt(inputRank-i) == outShape[shapeLen-i] || input->sizeAt(inputRank-i) == 1, 0, "BROADCAST_TO op: shape of input array %s can't be broadcasted to the shape %s !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
|
|
|
|
input->tile(*output);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(broadcast_to) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(DataType::ANY)
|
|
->setSameMode(true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
DECLARE_SHAPE_FN(broadcast_to) {
|
|
|
|
auto inputShapeInfo = inputShape->at(0);
|
|
auto shape = INPUT_VARIABLE(1);
|
|
|
|
const int inputRank = inputShapeInfo[0];
|
|
const int shapeRank = shape->rankOf();
|
|
const Nd4jLong shapeLen = shape->lengthOf();
|
|
|
|
REQUIRE_TRUE(shapeRank <= 1, 0, "BROADCAST_TO op: rank of input shape array should be <= 1, bit got %i instead !", shapeRank);
|
|
REQUIRE_TRUE(inputRank <= shapeLen, 0, "BROADCAST_TO op: rank of input shape array should be <= length of shape array, bot got %i and %i correspondingly !", inputRank, shapeLen);
|
|
|
|
std::vector<Nd4jLong> shapeBuff = shape->getBufferAsVector<Nd4jLong>();
|
|
std::vector<Nd4jLong> outShape(shapeBuff.begin(), shapeBuff.end());
|
|
|
|
for(int i = 1; i <= inputRank; ++i)
|
|
REQUIRE_TRUE(inputShapeInfo[inputRank+1-i] == outShape[shapeLen-i] || inputShapeInfo[inputRank+1-i] == 1, 0, "BROADCAST_TO op: shape of input array %s can't be broadcasted to the shape %s !", ShapeUtils::shapeAsString(inputShapeInfo).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
|
|
|
|
auto outShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inputShapeInfo), shape::order(inputShapeInfo), outShape);
|
|
return SHAPELIST(outShapeInfo);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#endif |