raver119 763a225c6a [WIP] More of CUDA operations (#69)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* - gruCell_bp further

Signed-off-by: Yurii <yurii@skymind.io>

* - further work on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Inverse matrix cublas implementation. Partial working revision.

* Separation of segment ops helpers. Max separation.

* Separated segment_min ops.

* Separation of segment_mean/sum/prod/sqrtN ops heleprs.

* Fixed diagonal processing with LUP decomposition.

* Modified inversion approach using current state of LU decomposition.

* Implementation of matrix_inverse op with cuda kernels. Working revision.

* Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests.

* - further work on gruCell_bp (ff/cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* comment one test for gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda static_rnn

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored random_shuffle op to use new random generator.

* Refactored random_shuffle op helper.

* Fixed debug tests with random ops tests.

* Implement random_shuffle op cuda kernel helper and tests.

* - provide cuda scatter_update

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of random_shuffle for linear case with cuda kernels and tests.

* Implemented random_shuffle with cuda kernels. Final revision.

* - finally gruCell_bp is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Dropout op cuda helper implementation.

* Implemented dropout_bp cuda helper.

* Implemented alpha_dropout_bp with cuda kernel helpers.

* Refactored helper.

* Implementation of suppresion helper with cuda kernels.

* - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue

Signed-off-by: Yurii <yurii@skymind.io>

* Using sort by value method.

* Implementation of image.non_max_suppression op cuda-based helper.

* - correcting and testing adjust_hue, adjust_saturation cpu/cuda code

Signed-off-by: Yurii <yurii@skymind.io>

* Added cuda device prefixes to declarations.

* Implementation of hashcode op with cuda helper. Initital revision.

* rnn cu impl removed

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:20:41 +10:00

139 lines
7.7 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 02.04.2018
//
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/rnn.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(static_rnn, 4, 2, false, 0, 0) {
auto x = INPUT_VARIABLE(0); // input [time x bS x inSize]
auto Wx = INPUT_VARIABLE(1); // input-to-hidden weights, [inSize x numUnits]
auto Wh = INPUT_VARIABLE(2); // hidden-to-hidden weights, [numUnits x numUnits]
auto b = INPUT_VARIABLE(3); // biases for, [2*numUnits]
NDArray* h0 = nullptr; // initial cell output (at time step = 0) [bS x numUnits]
NDArray* maxTimeStep = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
if(block.width() == 5) {
if ((*INPUT_VARIABLE(4)).rankOf() == 2)
h0 = INPUT_VARIABLE(4);
else
maxTimeStep = INPUT_VARIABLE(4);
}
else if(block.width() == 6) {
h0 = INPUT_VARIABLE(4);
maxTimeStep = INPUT_VARIABLE(5);
}
auto h = OUTPUT_VARIABLE(0); // cell outputs [time x bS x numUnits]
auto hFinal = OUTPUT_VARIABLE(1); // at the end it will store cell final non-zero output [bS x numUnits]
REQUIRE_TRUE(x->rankOf() == 3, 0, "STATIC_RNN custom operation: input array x must have rank = 3, but got %i instead !", x->rankOf());
REQUIRE_TRUE(Wx->rankOf() == 2, 0, "STATIC_RNN custom operation: input-to-hidden weights array must have rank = 2, but got %i instead !", Wx->rankOf());
const int time = x->sizeAt(0);
const int bS = x->sizeAt(1);
const int inSize = x->sizeAt(2);
const int numUnits = Wx->sizeAt(1);
REQUIRE_TRUE(ShapeUtils::shapeAsString(Wh) == ShapeUtils::shapeAsString({numUnits, numUnits}), 0, "STATIC_RNN custom operation: wrong shape of hidden-to-hidden weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({numUnits, numUnits}).c_str(), ShapeUtils::shapeAsString(Wh).c_str());
REQUIRE_TRUE(ShapeUtils::shapeAsString(b) == ShapeUtils::shapeAsString({2*numUnits}), 0, "STATIC_RNN custom operation: wrong shape of biases array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({2*numUnits}).c_str(), ShapeUtils::shapeAsString(b).c_str());
if(h0)
REQUIRE_TRUE(ShapeUtils::shapeAsString(h0) == ShapeUtils::shapeAsString({bS, numUnits}), 0, "STATIC_RNN custom operation: wrong shape of initial cell output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString({bS, numUnits}).c_str(), ShapeUtils::shapeAsString(h0).c_str());
if(maxTimeStep)
REQUIRE_TRUE(ShapeUtils::shapeAsString(maxTimeStep) == ShapeUtils::shapeAsString({bS}), 0, "STATIC_RNN custom operation: wrong shape of maxTimeStep array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({bS}).c_str(), ShapeUtils::shapeAsString(maxTimeStep).c_str());
helpers::rnnTimeLoop(block.launchContext(), x, Wx, Wh, b, h0, maxTimeStep, h, hFinal);
return Status::OK();
}
DECLARE_TYPES(static_rnn) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(static_rnn) {
auto xShapeInfo = inputShape->at(0); // input [time x bS x inSize]
auto WxShapeInfo = inputShape->at(1); // input-to-hidden weights, [inSize x numUnits]
auto WhShapeInfo = inputShape->at(2); // hidden-to-hidden weights, [numUnits x numUnits]
auto bShapeInfo = inputShape->at(3); // biases for, [2*numUnits]
Nd4jLong* h0ShapeInfo = nullptr; // initial cell output (at time step = 0) [bS x numUnits]
Nd4jLong* maxTimeStepShapeInfo = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
if(block.width() == 5) {
if (inputShape->at(4)[0] == 2)
h0ShapeInfo = inputShape->at(4);
else
maxTimeStepShapeInfo = inputShape->at(4);
}
else if(block.width() == 6) {
h0ShapeInfo = inputShape->at(4);
maxTimeStepShapeInfo = inputShape->at(5);
}
REQUIRE_TRUE(xShapeInfo[0] == 3, 0, "STATIC_RNN custom operation: input array x must have rank = 3, but got %i instead !", xShapeInfo[0]);
REQUIRE_TRUE(WxShapeInfo[0] == 2, 0, "STATIC_RNN custom operation: input-to-hidden weights array must have rank = 2, but got %i instead !", WxShapeInfo[0]);
const int inRank = xShapeInfo[0];
const int time = xShapeInfo[1];
const int bS = xShapeInfo[2];
const int numUnits = WxShapeInfo[2];
REQUIRE_TRUE(ShapeUtils::shapeAsString(WhShapeInfo) == ShapeUtils::shapeAsString({numUnits, numUnits}), 0, "STATIC_RNN custom operation: wrong shape of hidden-to-hidden weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({numUnits, numUnits}).c_str(), ShapeUtils::shapeAsString(WhShapeInfo).c_str());
REQUIRE_TRUE(ShapeUtils::shapeAsString(bShapeInfo) == ShapeUtils::shapeAsString({2*numUnits}), 0, "STATIC_RNN custom operation: wrong shape of biases array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({2*numUnits}).c_str(), ShapeUtils::shapeAsString(bShapeInfo).c_str());
if(h0ShapeInfo)
REQUIRE_TRUE(ShapeUtils::shapeAsString(h0ShapeInfo) == ShapeUtils::shapeAsString({bS, numUnits}), 0, "STATIC_RNN custom operation: wrong shape of initial cell output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString({bS, numUnits}).c_str(), ShapeUtils::shapeAsString(h0ShapeInfo).c_str());
if(maxTimeStepShapeInfo)
REQUIRE_TRUE(ShapeUtils::shapeAsString(maxTimeStepShapeInfo) == ShapeUtils::shapeAsString({bS}), 0, "STATIC_RNN custom operation: wrong shape of maxTimeStep array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({bS}).c_str(), ShapeUtils::shapeAsString(maxTimeStepShapeInfo).c_str());
// evaluate output shapeInfos
Nd4jLong *hShapeInfo(nullptr), *hPrevShapeInfo(nullptr);
ALLOCATE(hShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank), Nd4jLong);
ALLOCATE(hPrevShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank-1), Nd4jLong);
hShapeInfo[0] = inRank;
hPrevShapeInfo[0] = inRank-1;
hShapeInfo[1] = time;
hShapeInfo[2] = hPrevShapeInfo[1] = bS;
hShapeInfo[3] = hPrevShapeInfo[2] = numUnits;
ShapeUtils::updateStridesAndType(hShapeInfo, xShapeInfo, shape::order(xShapeInfo));
ShapeUtils::updateStridesAndType(hPrevShapeInfo, xShapeInfo, shape::order(xShapeInfo));
return SHAPELIST(CONSTANT(hShapeInfo), CONSTANT(hPrevShapeInfo));
}
}
}