Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

141 lines
5.4 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_unstack)
#include <ops/declarable/CustomOperations.h>
#include <helpers/ConstantTadHelper.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(unstack, 1, -1, false, 0, 1) {
auto input = INPUT_VARIABLE(0);
auto dim = INT_ARG(0);
if (dim < 0)
dim += input->rankOf();
REQUIRE_TRUE(dim < input->rankOf(), 0, "Unstack dimension should be lower then rank of input %i, but got dimension=%i !", input->rankOf(), dim);
REQUIRE_TRUE(dim >= 0, 0, "Unstack dimension should be non-negative value, but got %i !", dim);
if(input->isEmpty())
return Status::OK();
std::vector<int> dims;
for (int e = 0; e < input->rankOf(); e++)
if (e != dim)
dims.emplace_back(e);
if (dims.size() == 0 && input->rankOf() == 1) { // split vector into lenthOf scalars
for (Nd4jLong e = 0; e < input->lengthOf(); e++) {
auto outE = OUTPUT_VARIABLE(e);
outE->assign(input->e(e));
}
}
auto tads = input->allTensorsAlongDimension(dims);
//nd4j_printf("Tad size: %d\n",tads->size());
for (int e = 0; e < tads->size(); e++) {
//nd4j_printf("Calling assign at index %d\n",e);
auto outE = OUTPUT_VARIABLE(e);
auto tadAtE = tads->at(e);
outE->assign(tadAtE);
this->storeResult(block, e, *outE);
}
delete tads;
return Status::OK();
}
DECLARE_SYN(unpack, unstack);
DECLARE_SHAPE_FN(unstack) {
auto inShape = inputShape->at(0);
auto dim = INT_ARG(0);
if (dim < 0)
dim += shape::rank(inShape);
REQUIRE_TRUE(dim < inShape[0], 0, "UNSTACK op: dimension should be lower then rank of input %i, but got dimension=%i !", inShape[0], dim);
REQUIRE_TRUE(dim >= 0, 0, "UNSTACK op: dimension should be non-negative value, but got %i !", dim);
if(ArrayOptions::arrayType(inShape) == ArrayType::EMPTY) {
if(shape::shapeOf(inShape)[dim] == 0)
return SHAPELIST();
const Nd4jLong numTads = shape::shapeOf(inShape)[dim];
std::vector<Nd4jLong> outShape;
for(uint i = 0; i < shape::rank(inShape); ++i)
if(i != dim)
outShape.push_back(shape::shapeOf(inShape)[i]);
auto result = SHAPELIST();
for(uint i = 0; i < numTads; ++i)
result->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), outShape));
return result;
}
std::vector<int> dims;
for (int e = 0; e < shape::rank(inShape); e++)
if (e != dim)
dims.emplace_back(e);
if (dims.size() == 0 && shape::rank(inShape) == 1) { // split vector into lenthOf scalars
//
auto result = SHAPELIST();
for (Nd4jLong e = 0; e < shape::length(inShape); e++)
result->push_back(ConstantShapeHelper::getInstance()->scalarShapeInfo(ArrayOptions::dataType(inShape)));
return result;
}
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(inShape, dims);
auto numTads = tadPack.numberOfTads();
std::vector<Nd4jLong> shape(shape::rank(tadPack.primaryShapeInfo()));
for (int e = 0; e < shape::rank(tadPack.primaryShapeInfo()); e++)
shape[e] = shape::shapeOf(tadPack.primaryShapeInfo())[e];
// remove leading and trailing 1
if (inShape[0] == 2 && shape.size() == 2) {
if (shape[0] == 1) {
shape.erase(shape.begin());
} else if (shape[1] == 1) {
shape.erase(shape.end());
}
}
auto result = SHAPELIST();
for (int e = 0; e < numTads; e++) {
auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), shape);
result->push_back(newShape);
}
return result;
}
DECLARE_TYPES(unstack) {
getOpDescriptor()
->setAllowedInputTypes({ALL_FLOATS, ALL_INTS})
->setSameMode(true);
}
}
}
#endif