raver119 763a225c6a [WIP] More of CUDA operations (#69)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* - gruCell_bp further

Signed-off-by: Yurii <yurii@skymind.io>

* - further work on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Inverse matrix cublas implementation. Partial working revision.

* Separation of segment ops helpers. Max separation.

* Separated segment_min ops.

* Separation of segment_mean/sum/prod/sqrtN ops heleprs.

* Fixed diagonal processing with LUP decomposition.

* Modified inversion approach using current state of LU decomposition.

* Implementation of matrix_inverse op with cuda kernels. Working revision.

* Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests.

* - further work on gruCell_bp (ff/cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* comment one test for gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda static_rnn

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored random_shuffle op to use new random generator.

* Refactored random_shuffle op helper.

* Fixed debug tests with random ops tests.

* Implement random_shuffle op cuda kernel helper and tests.

* - provide cuda scatter_update

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of random_shuffle for linear case with cuda kernels and tests.

* Implemented random_shuffle with cuda kernels. Final revision.

* - finally gruCell_bp is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Dropout op cuda helper implementation.

* Implemented dropout_bp cuda helper.

* Implemented alpha_dropout_bp with cuda kernel helpers.

* Refactored helper.

* Implementation of suppresion helper with cuda kernels.

* - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue

Signed-off-by: Yurii <yurii@skymind.io>

* Using sort by value method.

* Implementation of image.non_max_suppression op cuda-based helper.

* - correcting and testing adjust_hue, adjust_saturation cpu/cuda code

Signed-off-by: Yurii <yurii@skymind.io>

* Added cuda device prefixes to declarations.

* Implementation of hashcode op with cuda helper. Initital revision.

* rnn cu impl removed

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:20:41 +10:00

106 lines
3.9 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created to use with batched tensor by GS <sgazeos@gmail.com> 3/27/2018
//
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/sequence_mask.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(sequence_mask, 1, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
const int inRank = input->rankOf();
//REQUIRE_TRUE(inRank >= 1, 0, "sequence_mask: input array must have rank >= 1, but %i given!", inRank);
Nd4jLong maxInd = input->argMax();
float max = input->e<float>(maxInd);
if (block.getIArguments()->size() > 0) {
maxInd = INT_ARG(0);
if (maxInd < max)
maxInd = static_cast<Nd4jLong>(max);
}
else if (block.width() > 1) {
auto maxlen = INPUT_VARIABLE(1);
//REQUIRE_TRUE(maxlen->lengthOf() == 1, "sequence_mask: 2nd input (max length) should be a scalar array.");
float tmaxlen = maxlen->e<float>(0);
if (tmaxlen > max)
maxInd = static_cast<Nd4jLong>(tmaxlen);
}
else
maxInd = static_cast<Nd4jLong>(max);
helpers::sequenceMask(block.launchContext(), input, output, maxInd);
return Status::OK();
}
DECLARE_SHAPE_FN(sequence_mask) {
Nd4jLong* outShapeInfo = nullptr;
auto in = inputShape->at(0);
int outRank = shape::rank(in) + 1;
auto input = INPUT_VARIABLE(0);
auto dtype = DataType::BOOL;
Nd4jLong maxInd = input->argMax();
Nd4jLong max = input->e<Nd4jLong>(maxInd);
if (block.getIArguments()->size() > 0) {
if (block.width() < 2) {
maxInd = INT_ARG(0);
if (maxInd < max)
maxInd = static_cast<Nd4jLong>(max);
if (block.getIArguments()->size() > 1)
dtype = (DataType)INT_ARG(1);
}
else {
dtype = (DataType)INT_ARG(0);
}
}
if (block.width() > 1) {
auto maxlen = INPUT_VARIABLE(1);
Nd4jLong tmaxlen = maxlen->e<Nd4jLong>(0);
if (tmaxlen > max)
maxInd = static_cast<Nd4jLong>(tmaxlen);
}
else
maxInd = static_cast<Nd4jLong>(max);
int lastDimension = maxInd;
ALLOCATE(outShapeInfo, block.getWorkspace(), shape::shapeInfoLength(outRank), Nd4jLong);
outShapeInfo[0] = outRank;
for(int i = 0; i < outRank - 1; ++i)
outShapeInfo[i + 1] = shape::sizeAt(in, i);
outShapeInfo[outRank] = lastDimension;
ShapeUtils::updateStridesAndType(outShapeInfo, dtype, shape::order(in));
return SHAPELIST(CONSTANT(outShapeInfo));
}
DECLARE_TYPES(sequence_mask) {
getOpDescriptor()
->setAllowedInputTypes({ALL_INTS})
->setAllowedOutputTypes(nd4j::DataType::ANY);
}
}
}