raver119 c969b724bb [WIP] more CUDA stuff (#57)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Added gradcheck test for dynamic_partition_bp op.

* - implementation of dilation op (cpu and cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed broadcast_dynamic_shape 1D case and tests.

* Fixed usage of default integer arguments.

* Fixed dynamic_partition_bp op and tests.

* Eliminated test with grad check for dynamic_partition_bp op.

* start working on cuda svd - porting available corresponding api from cuSOLVER library

Signed-off-by: Yurii <yurii@skymind.io>

* provide prelu_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide gruCell_bp (old version ??)

Signed-off-by: Yurii <yurii@skymind.io>

* - polishing cumsum_bp and cumprod_bp tests

Signed-off-by: Yurii <yurii@skymind.io>

* provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed atomicMul with float input/output

* implementation of cuda kernel for triu_bp operation

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored lup helper to add parrallel computing.

* cusolver libraries

Signed-off-by: raver119 <raver119@gmail.com>

* uncomment cuSolver APIs in svd.cu

Signed-off-by: Yurii <yurii@skymind.io>

* cusolver var

Signed-off-by: raver119 <raver119@gmail.com>

* - further work on cuSolver svd

Signed-off-by: Yurii <yurii@skymind.io>

* Implement usage of cuda solver to LUP decomposition.

* - correct naames in lup functions

Signed-off-by: Yurii <yurii@skymind.io>

* correct svdQR cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - provide transpositions of input matrices in case of c order in svdCudaQR

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed implementation issues with LUP usign cuda solver.

* Implementation of matrix_determinant helper with cuda kernels. Working revision.

* Implemented log_matrix_determinant helper with cuda kernels.

* - implementation of batched cuda svd

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored cholesky helper and implementation of cuda solver cholesky batch.

* - implementation of cuda kernel for tile bp

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cholesky and logdet with cuda kernels.

* - implementation of cuda kernel for sru_bidirectional

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed cholesky helper.

* Cholesky op helper implementation. Working double-based cublas implementation.

* bad import excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Finished with cuda implementation of cholesky helper and tests.

* - implementation of cuda kernel for sru_bidirectional_backprop operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of matrix_inverse op helper with cuda kernels. The first revision.

* - start working on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of matrix_inverse helper.

* - further work on new gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* cuBLAS related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* calculateOutputShapes() now passes device buffers as well

Signed-off-by: raver119 <raver119@gmail.com>

* special concat/average/accumulate init host pointers now

Signed-off-by: raver119 <raver119@gmail.com>

* few more tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* additional CudaDataBufferFactory signatures certain for data types

Signed-off-by: raver119 <raver119@gmail.com>

* cuSolver host buffer

Signed-off-by: raver119 <raver119@gmail.com>

* buffer to buffer memcpy host ptr allocation

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:05:21 +10:00

146 lines
6.4 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by GS <sgazeos@gmail.com> at 2/26/2018
//
#include <op_boilerplate.h>
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/lup.h>
#if NOT_EXCLUDED(OP_matrix_determinant)
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(matrix_determinant, 1, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
REQUIRE_TRUE(input->rankOf() >=2, 0, "matrix_determinant: The rank of input array should not less than 2, but %i is given", input->rankOf());
REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "matrix_determinant: The last two dimmensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2));
return helpers::determinant(block.launchContext(), input, output);
}
DECLARE_SHAPE_FN(matrix_determinant) {
auto inShape = inputShape->at(0);
Nd4jLong* determinantShape;
int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar
if (targetRank == 0) { // scalar only
determinantShape = ConstantShapeHelper::getInstance()->scalarShapeInfo(ArrayOptions::dataType(inShape));
}
else if (targetRank == 1) { // vector
determinantShape = ConstantShapeHelper::getInstance()->vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape));
}
else { // only two last dimensions are excluded
determinantShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape));
}
return SHAPELIST(determinantShape);
}
DECLARE_TYPES(matrix_determinant) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
}
}
#endif
#if NOT_EXCLUDED(OP_log_matrix_determinant)
namespace nd4j {
namespace ops {
DECLARE_TYPES(log_matrix_determinant) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
CUSTOM_OP_IMPL(log_matrix_determinant, 1, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
REQUIRE_TRUE(input->rankOf() >=2, 0, "log_matrix_determinant: The rank of input array should not less than 2, but %i is given", input->rankOf());
REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "log_matrix_determinant: The last two dimmensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2));
return helpers::logAbsDeterminant(block.launchContext(), input, output);
}
DECLARE_SHAPE_FN(log_matrix_determinant) {
auto inShape = inputShape->at(0);
Nd4jLong* determinantShape;
int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar
if (targetRank == 0) { // scalar only
determinantShape = ConstantShapeHelper::getInstance()->scalarShapeInfo(ArrayOptions::dataType(inShape));
}
else if (targetRank == 1) { // vector
determinantShape = ConstantShapeHelper::getInstance()->vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape));
}
else { // only two last dimensions are excluded
determinantShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape));
}
return SHAPELIST(determinantShape);
}
}
}
#endif
#if NOT_EXCLUDED(OP_logdet)
namespace nd4j {
namespace ops {
DECLARE_TYPES(logdet) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
CUSTOM_OP_IMPL(logdet, 1, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
REQUIRE_TRUE(input->rankOf() >=2, 0, "logdet: The rank of input array should not less than 2, but %i is given", input->rankOf());
REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "logdet: The last two dimmensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2));
REQUIRE_TRUE(helpers::checkCholeskyInput(block.launchContext(), input), 0, "logdet: The input tensor should be positive-defined hermitian.");
return helpers::logdetFunctor(block.launchContext(), input, output);
}
DECLARE_SHAPE_FN(logdet) {
auto inShape = inputShape->at(0);
Nd4jLong* determinantShape;
int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar
if (targetRank == 0) { // scalar only
determinantShape = ConstantShapeHelper::getInstance()->scalarShapeInfo(ArrayOptions::dataType(inShape));
}
else if (targetRank == 1) { // vector
determinantShape = ConstantShapeHelper::getInstance()->vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape));
}
else { // only two last dimensions are excluded
determinantShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape));
}
return SHAPELIST(determinantShape);
}
}
}
#endif