cavis/libnd4j/include/ops/declarable/generic/loss/softmaxCrossEntropy.cpp
Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

398 lines
19 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 25.11.2017.
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_softmax_cross_entropy_loss)
#include <ops/declarable/CustomOperations.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(softmax_cross_entropy_loss, 3, 1, false, 1, 1) {
auto logits = INPUT_VARIABLE(0);
auto weights = INPUT_VARIABLE(1);
auto labels = INPUT_VARIABLE(2);
auto output = OUTPUT_VARIABLE(0);
int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights"
double labelsSmoothing = T_ARG(0);
// input validation
REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
// only 4 possible reduction modes exist
REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
// smoothing is possible for rank of logits/labels > 1
REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: smoothing is not possible when rank of labels/ logits = 1 !");
if(!output->isScalar()) {
// weights array can be single scalar or has the same shape as output, and must be broadcastable to output shape
REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == output->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", weights->rankOf(), output->rankOf());
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *output), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
}
// If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
// num_classes = labels->sizeAt(1)
auto cLabels = labels->cast(weights->dataType());
auto newLabels = cLabels;
if(labelsSmoothing != 0.) {
newLabels = new NDArray(cLabels);
*newLabels = (1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1);
}
// main formula: result = - sum_i(lables_i * log(softmax_i)) - sum over last dimension
// softmax_i = exp(logits_i) / sum_j(exp(logits_j))
// so result = sum_i( lables_i * (log(sum_j(exp(logits_j))) - logits_i) )
// for numerical stability we use shifted logits (one can approve this using simple math):
// softmax_i = exp(logits_i - maxLogit) / sum_j(exp(logits_j - maxLogit))
// maxLogit is max among logits_i
std::vector<int> dimensions = {-1};
NDArray shiftedLogits = *logits - logits->reduceAlongDims(reduce::Max, dimensions, true);
NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDims(reduce::Sum, dimensions, true).transform(transform::Log);
NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDims(reduce::Sum, dimensions);
// perform weights broadcasting/tile to E if it is necessary
auto weightsBroad = weights;
if(!weights->isScalar() && !weights->isSameShape(&E)) {
if(E.rankOf() == 1 && weights->isVector() && weights->rankOf() > 1)
weightsBroad = new NDArray(weights->reshape(weights->ordering(), {weights->lengthOf()}));
else
weightsBroad = new NDArray(weights->tileToShape(E.getShapeInfo()));
}
// multiply E on weights
E *= *weightsBroad;
switch (reductionMode) {
case 0: // 0 - "none", un-reduced weighted losses with the same shape as labels.
output->assign(&E);
break;
case 1: { // 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
E.reduceNumber(reduce::Sum, *output);
break;
}
case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
double sum;
if (weights->isScalar())
sum = weights->e<double>(0) * E.lengthOf();
else
sum = weightsBroad->reduceNumber(reduce::Sum).e<double>(0);
if (sum == 0.)
*output = 0.;
else
output->assign(E.reduceNumber(reduce::Sum) / sum);
break;
}
case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
Nd4jLong numOfNonZeroWeights = 0;
if(weights->isScalar()) {
if(weights->e<double>(0) != 0.)
numOfNonZeroWeights = E.lengthOf();
}
else {
numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
}
if (numOfNonZeroWeights == 0)
*output = 0.;
else
output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
break;
}
}
if(weightsBroad != weights)
delete weightsBroad;
if(newLabels != cLabels)
delete newLabels;
delete cLabels;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(softmax_cross_entropy_loss) {
getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS})
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS})
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(softmax_cross_entropy_loss) {
auto logitsShapeInfo = inputShape->at(0);
auto weightsShapeInfo = inputShape->at(1);
auto labelsShapeInfo = inputShape->at(2);
// labels and logits must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
Nd4jLong* outShapeInfo = nullptr;
if(INT_ARG(0) != 0) // in this case output is scalar
outShapeInfo = ConstantShapeHelper::getInstance()->scalarShapeInfo(outType);
else { // in this case output has the shape as labels and logits minus last dimension
std::vector<int> dimensions = {-1};
outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, true, block.getWorkspace());
// weights array can be single scalar or has the same rank as output, and must be broadcastable to output
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(outShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(outShapeInfo).c_str());
}
return SHAPELIST(outShapeInfo);
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(softmax_cross_entropy_loss_grad, 3, 3, false, 1, 1) {
auto logits = INPUT_VARIABLE(0);
auto weights = INPUT_VARIABLE(1);
auto labels = INPUT_VARIABLE(2);
auto dLdp = OUTPUT_VARIABLE(0); // dL/dlogits
auto dLdw = OUTPUT_VARIABLE(1); // dL/dweights
auto dLdl = OUTPUT_VARIABLE(2); // dL/dlabels
auto labelsSmoothing = T_ARG(0);
int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights"
// take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
if(reductionMode == 0)
reductionMode = 1;
std::vector<int> dimensions = {-1};
// input validation
REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
// only 4 possible reduction modes exist
REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(logits->ordering(), dimensions, logits->getShapeInfo(), false, false, block.getWorkspace());
// weights array can be single scalar or has the same shape as loss, and must be broadcastable to loss shape
REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", weights->rankOf(), shape::rank(lossShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(weights->getShapeInfo(), lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
// smoothing is possible for rank of logits/labels > 1
REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: smoothing is not possible when rank of labels/ logits = 1 !");
// If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
// num_classes = labels->sizeAt(1)
auto cLabels = labels->cast(weights->dataType());
auto newLabels = cLabels;
if(labelsSmoothing != 0.) {
newLabels = new NDArray(labels->getShapeInfo(), dLdl->dataType(), false, block.launchContext());
newLabels->assign((1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1));
}
NDArray softmax = (*logits - logits->reduceAlongDims(reduce::Max, dimensions, true)).transform(transform::Exp);
softmax /= softmax.reduceAlongDims(reduce::Sum, dimensions, true);
// dEdp = softmax * sum_i(lables_i) - labels
dLdp->assign(softmax * newLabels->reduceAlongDims(reduce::Sum, dimensions, true) - *newLabels);
// dEdl = -log(softmax)
dLdl->assign(-softmax.transform(transform::Log)* (1.f - labelsSmoothing));
NDArray shiftedLogits = *logits - logits->reduceAlongDims(reduce::Max, dimensions, true);
NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDims(reduce::Sum, dimensions, true).transform(transform::Log);
NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDims(reduce::Sum, dimensions);
// perform weights broadcasting/tile to E if it is necessary
auto weightsBroad = weights;
if(!weights->isScalar() && !weights->isSameShape(&E))
weightsBroad = new NDArray(weights->tileToShape(E.getShapeInfo()));
dimensions = ShapeUtils::evalDimsToExclude(dLdp->rankOf(), dimensions);
switch (reductionMode) {
case 1: { // 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array
if(weights->isScalar() || weights->lengthOf() == 1) {
dLdw->assign(E.reduceNumber(reduce::Sum));
*dLdp *= *weights;
*dLdl *= *weights;
}
else {
dLdp->applyBroadcast(nd4j::broadcast::Multiply, dimensions, weightsBroad);
dLdl->applyBroadcast(nd4j::broadcast::Multiply, dimensions, weightsBroad);
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
}
else
dLdw->assign(E);
}
break;
}
case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
NDArray sum;
if (weights->isScalar())
sum = (*weights) * E.lengthOf();
else
sum = weightsBroad->reduceNumber(reduce::Sum);
if (sum.e<double>(0) == 0.) {
*dLdp = 0.;
*dLdl = 0.;
*dLdw = 0.;
}
else {
if(weights->isScalar() || weights->lengthOf() == 1) {
NDArray temp = *weights / sum;
*dLdp *= temp;
*dLdl *= temp;
*dLdw = 0.;
}
else {
NDArray temp = *weightsBroad / sum;
dLdp->applyBroadcast(nd4j::broadcast::Multiply, dimensions, &temp);
dLdl->applyBroadcast(nd4j::broadcast::Multiply, dimensions, &temp);
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
}
else
dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum));
}
}
break;
}
case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
Nd4jLong numOfNonZeroWeights = 0;
if(weights->isScalar()) {
if(weights->e<double>(0) != 0.)
numOfNonZeroWeights = E.lengthOf();
}
else
numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
if (numOfNonZeroWeights == 0) {
*dLdp = 0.;
*dLdl = 0.;
*dLdw = 0.;
}
else {
if(weights->isScalar() || weights->lengthOf() == 1) {
NDArray temp = *weights / numOfNonZeroWeights;
*dLdp *= temp;
*dLdl *= temp;
dLdw->assign(E.reduceNumber(reduce::Sum) / numOfNonZeroWeights);
}
else {
NDArray temp = *weightsBroad / numOfNonZeroWeights;
dLdp->applyBroadcast(nd4j::broadcast::Multiply, dimensions, &temp);
dLdl->applyBroadcast(nd4j::broadcast::Multiply, dimensions, &temp);
if(weights != weightsBroad) {
std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
*dLdw /= numOfNonZeroWeights;
}
else
dLdw->assign(E / numOfNonZeroWeights);
}
}
break;
}
}
if(weightsBroad != weights)
delete weightsBroad;
if(newLabels != cLabels)
delete newLabels;
delete cLabels;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(softmax_cross_entropy_loss_grad) {
getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS})
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS})
->setAllowedInputTypes(3, {ALL_FLOATS})
->setAllowedInputTypes(4, {ALL_FLOATS})
->setAllowedInputTypes(5, {ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(softmax_cross_entropy_loss_grad) {
auto logitsShapeInfo = inputShape->at(0);
auto weightsShapeInfo = inputShape->at(1);
auto labelsShapeInfo = inputShape->at(2);
std::vector<int> dimensions = {-1};
// labels and logits must have the same shapes
REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, false, block.getWorkspace());
// weights array can be single scalar or has the same rank as loss, and must be broadcastable to loss
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(lossShapeInfo));
// check whether broadcast operation is possible for weights array
REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
auto outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
auto dLdpShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(logitsShapeInfo), shape::shapeOf(logitsShapeInfo), shape::rank(logitsShapeInfo)));
auto dLdwShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(weightsShapeInfo), shape::shapeOf(weightsShapeInfo), shape::rank(weightsShapeInfo)));
auto dLdlShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo), shape::rank(labelsShapeInfo)));
return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo);
}
}
}
#endif