cavis/libnd4j/include/ops/specials_cuda.h

106 lines
4.7 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#ifndef PROJECT_SPECIALS_CUDA_H
#define PROJECT_SPECIALS_CUDA_H
#include <helpers/shape.h>
#include <helpers/DebugHelper.h>
#ifdef __CUDACC__
////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ void bitonicSortStepGeneric(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, int j, int k, int length, bool descending);
////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ void bitonicArbitraryStepGeneric(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, int window, int length, int reverse, bool descending);
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__host__ void bitonicSortStepGenericKey(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int j, int k, int length, bool descending);
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__host__ void bitonicArbitraryStepGenericKey(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int window, int length, int reverse, bool descending);
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__host__ void bitonicSortStepGenericValue(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int j, int k, int length, bool descending);
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__host__ void bitonicArbitraryStepGenericValue(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int window, int length, int reverse, bool descending);
////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ void oesTadGeneric(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending);
template <typename X, typename Y>
__host__ void oesTadGenericKey(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending);
template <typename X, typename Y>
__host__ void oesTadGenericValue(dim3 &launchDims, cudaStream_t *stream, void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending);
////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ void printCudaGlobal(void* pointer, const int len) {
for(int i = 0; i < len; ++i)
printf("%f, ", (double)reinterpret_cast<T*>(pointer)[i] );
printf("\n");
}
////////////////////////////////////////////////////////////////////////
template<typename T>
__device__ void printCudaDevice(void* pointer, const int len, const int tid = 0) {
if(blockIdx.x * blockDim.x + threadIdx.x != tid) return;
for(int i = 0; i < len; ++i)
printf("%f, ", (double)reinterpret_cast<T*>(pointer)[i] );
printf("\n");
}
////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ void printCudaHost(void* pointer, const int len, cudaStream_t& stream) {
void* ptr = malloc(sizeof(T)*len);
cudaMemcpyAsync(ptr, pointer, sizeof(T)*len, cudaMemcpyDeviceToHost, stream);
cudaError_t cudaResult = cudaStreamSynchronize(stream);
if(cudaResult != 0)
throw std::runtime_error("printCudaHost:: cudaStreamSynchronize failed!");
for(int i = 0; i < len; ++i)
printf("%f, ", (double)reinterpret_cast<T*>(ptr)[i]);
printf("\n");
free(ptr);
}
#endif
#endif //PROJECT_SPECIALS_CUDA_H