cavis/libnd4j/include/ops/declarable/helpers/cuda/sru.cu

535 lines
22 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// implementation of operations for Simple Recurrent Unit: arXiv:1709.02755v2 [cs.CL] 12 Sep 2017
//
// @author Yurii Shyrma, created on 05.12.2017
//
#include<ops/declarable/helpers/sru.h>
#include <NDArrayFactory.h>
#include <PointersManager.h>
#include <MmulHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
static FORCEINLINE NDArray activation(const NDArray& arr) {
// return (const_cast<NDArray<T>&>(arr)).template transform<simdOps::Tanh<T>>();
auto result = NDArray(&arr, false, arr.getContext());
(const_cast<NDArray&>(arr)).applyTransform(transform::Tanh, result);
return result;
}
//////////////////////////////////////////////////////////////////////////
static FORCEINLINE NDArray sigmoid(const NDArray& arr) {
return (const_cast<NDArray&>(arr)).transform(transform::Sigmoid);
}
//////////////////////////////////////////////////////////////////////////
void sruCell(nd4j::LaunchContext * context, const NDArray* x, const NDArray* c0, const NDArray* w, const NDArray* b, NDArray* h, NDArray* c) {
// x input [bS x inSize], bS - batch size, inSize - number of features
// c0 previous cell state c [bS x inSize], that is at previous time step t-1
// w weights [inSize x 3*inSize]
// b biases [2*inSize]
// h current cell output [bS x inSize], that is at current time step t
// c current cell state [bS x inSize], that is at current time step t
const int inSize = x->sizeAt(1); // inSize - number of features
auto z = mmul(*x, *w); // [bS x 3*inSize]
// forget gate = sigmoid(x*Wf + bf)
auto f = sigmoid(z({0,0, inSize, 2*inSize}) + (*b)({0, inSize}));
// reset gate = sigmoid(x*Wr + br)
auto r = sigmoid(z({0,0, 2*inSize, 3*inSize}) + (*b)({inSize, 2*inSize}));
// ◦ means element-wise product or so called Hadamard product
// current sell state = f◦c0 + (1 - f)◦(x*Wc)
c->assign(f * (*c0) + (1.f - f) * z({0, 0 ,0, inSize}) );
// *c = f*(*c0 - z({},{0, inSize})) + z({{},{0, inSize}});
// current cell output = r◦activation(c) + (1 - r)◦x
h->assign( r * activation(*c) + (1.f - r) * (*x) );
// *h = r * (activation<T>(c) - *x) + *x;
}
//////////////////////////////////////////////////////////////////////////
void sruTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* c0, const NDArray* w, const NDArray* b, NDArray* h, NDArray* c) {
// x input [bS x inSize x time]
// c0 initial cell state (at time step = 0) [bS x inSize],
// w weights, [3*inSize x inSize]
// b biases, [2*inSize]
// h cell outputs [bS x inSize x time]
// c cell states [bS x inSize x time]
auto wT = w->transpose(); // [3*inSize x inSize] -> [inSize x 3*inSize]
const int time = x->sizeAt(2);
NDArray ct_1(*c0);
// loop through time steps
for (int t = 0; t < time; ++t) {
auto xt = (*x)({0,0, 0,0, t,t+1});
auto ht = (*h)({0,0, 0,0, t,t+1});
auto ct = (*c)({0,0, 0,0, t,t+1});
helpers::sruCell(context, &xt, &ct_1, &wT, b, &ht, &ct);
ct_1.assign(ct);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
__global__ static void sruBICuda(const void* vx, const Nd4jLong* xShapeInfo,
const void* vwi, const Nd4jLong* wiShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vc0, const Nd4jLong* c0ShapeInfo,
const void* vmask, const Nd4jLong* maskShapeInfo,
void* vht, const Nd4jLong* htShapeInfo,
void* vct, const Nd4jLong* ctShapeInfo) {
// inputs:
// x [time, bS, 2*K]
// wi [time, bS, 6*K], wi = mmul(x, weights);
// b [4*K]
// c0 [bS, 2*K]
// mask [bS, 2*K], optional
// outputs
// ht [time, bS, 2*K]
// ct [time, bS, 2*K]
const auto x = reinterpret_cast<const T*>(vx);
const auto wi = reinterpret_cast<const T*>(vwi);
const auto b = reinterpret_cast<const T*>(vb);
const auto c0 = reinterpret_cast<const T*>(vc0);
const auto mask = reinterpret_cast<const T*>(vmask);
auto ht = reinterpret_cast<T*>(vht);
auto ct = reinterpret_cast<T*>(vct);
const int rank = 3;
__shared__ int time, K;
__shared__ Nd4jLong len, totalThreads, *sharedMem;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
time = xShapeInfo[1];
K = xShapeInfo[3] / 2;
len = xShapeInfo[2] * xShapeInfo[3]; // 2*K*bS
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
if(tid >= len)
return;
shape::index2coords(tid, rank - 1, xShapeInfo + 2, coords + 1); // loop through last two dimensions of x : {bS, 2*K}
const auto maskOffst = mask ? shape::getOffset(maskShapeInfo, coords + 1) : 0;
const auto c0Offset = shape::getOffset(c0ShapeInfo, coords + 1);
const auto bFOffset = shape::getOffset(bShapeInfo, coords + 2);
const auto bROffset = bFOffset + 2 * K * bShapeInfo[2]; // 2*K*b_stride
const T maskVal = mask ? mask[maskOffst] : static_cast<T>(1);
const T bF = b[bFOffset];
const T bR = b[bROffset];
T c0Val = c0[c0Offset];
const bool flip = coords[2] >= K;
if(flip)
coords[0] = time - 1;
else
coords[0] = 0;
auto xOffset = shape::getOffset(xShapeInfo, coords);
auto htOffset = shape::getOffset(htShapeInfo, coords);
auto ctOffset = shape::getOffset(ctShapeInfo, coords);
coords[2] *= 3;
auto wiOffset0 = shape::getOffset(wiShapeInfo, coords);
auto wiOffset1 = wiOffset0 + wiShapeInfo[rank + 3]; // add last stride
auto wiOffset2 = wiOffset1 + wiShapeInfo[rank + 3]; // add last stride
// time loop
for (uint t = 0; t < time; ++t) {
// evaluate sigmoids
T ft = (1.f)/(1.f + nd4j::math::nd4j_exp<T, T>(-(wi[wiOffset1] + bF)));
T rt = (1.f)/(1.f + nd4j::math::nd4j_exp<T, T>(-(wi[wiOffset2] + bR)));
c0Val = (c0Val - wi[wiOffset0]) * ft + wi[wiOffset0];
ct[ctOffset] = c0Val;
T val = nd4j::math::nd4j_tanh<T, T>(c0Val);
T xVal = x[xOffset];
ht[htOffset] = (val * maskVal - xVal) * rt + xVal;
if(flip) {
xOffset -= xShapeInfo[rank + 1]; // first stride, corresponds to time step
htOffset -= htShapeInfo[rank + 1];
ctOffset -= htShapeInfo[rank + 1];
wiOffset0 -= wiShapeInfo[rank + 1];
wiOffset1 -= wiShapeInfo[rank + 1];
wiOffset2 -= wiShapeInfo[rank + 1];
}
else {
xOffset += xShapeInfo[rank + 1]; // first stride, corresponds to time step
htOffset += htShapeInfo[rank + 1];
ctOffset += htShapeInfo[rank + 1];
wiOffset0 += wiShapeInfo[rank + 1];
wiOffset1 += wiShapeInfo[rank + 1];
wiOffset2 += wiShapeInfo[rank + 1];
}
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void sruBICudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo,
const void* vwi, const Nd4jLong* wiShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vc0, const Nd4jLong* c0ShapeInfo,
const void* vmask, const Nd4jLong* maskShapeInfo,
void* vht, const Nd4jLong* htShapeInfo,
void* vct, const Nd4jLong* ctShapeInfo) {
sruBICuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vwi, wiShapeInfo, vb, bShapeInfo, vc0, c0ShapeInfo, vmask, maskShapeInfo, vht, htShapeInfo, vct, ctShapeInfo);
}
//////////////////////////////////////////////////////////////////////////
void sruBI(nd4j::LaunchContext * context, NDArray* x, const NDArray* w, const NDArray* b, const NDArray* c0, const NDArray* mask, NDArray* ht, NDArray* ct) {
// x = x * mask
if(mask)
x->applyBroadcast(broadcast::Multiply, {1, 2}, *mask, *x); // apply mask
// U = x * w
NDArray wi = mmul(*x, *w); // U [time x bS x 6*K]
PointersManager manager(context, "sru_bi");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (x->sizeAt(1) * x->sizeAt(2) + threadsPerBlock - 1) / threadsPerBlock; // loop through last two dimensions of x array -> bS, 2*K
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * x->rankOf() + 128;
NDArray::prepareSpecialUse({ht, ct}, {x, &wi, b, c0, mask});
BUILD_SINGLE_SELECTOR(x->dataType(), sruBICudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), x->getSpecialBuffer(), x->getSpecialShapeInfo(), wi.getSpecialBuffer(), wi.getSpecialShapeInfo(), b->getSpecialBuffer(), b->getSpecialShapeInfo(), c0->getSpecialBuffer(), c0->getSpecialShapeInfo(), mask ? mask->getSpecialBuffer() : nullptr, mask ? mask->getSpecialShapeInfo() : nullptr, ht->specialBuffer(), ht->specialShapeInfo(), ct->specialBuffer(), ct->specialShapeInfo()), FLOAT_TYPES);
NDArray::registerSpecialUse({ht, ct}, {x, &wi, b, c0, mask});
manager.synchronize();
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
__global__ static void sruBIBPCuda(const void* vx, const Nd4jLong* xShapeInfo,
const void* vwi, const Nd4jLong* wiShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vc0, const Nd4jLong* c0ShapeInfo,
const void* vmask, const Nd4jLong* maskShapeInfo,
const void* vct, const Nd4jLong* ctShapeInfo,
const void* vgradHt, const Nd4jLong* gradHtShapeInfo,
const void* vgradCt, const Nd4jLong* gradCtShapeInfo,
void* vgradI, const Nd4jLong* gradIShapeInfo,
void* vgradWi, const Nd4jLong* gradWiShapeInfo,
void* vgradB, const Nd4jLong* gradBShapeInfo,
void* vgradC0, const Nd4jLong* gradC0ShapeInfo) {
// inputs:
// x [time, bS, 2*K]
// wi [time, bS, 6*K], wi = mmul(x, weights);
// b [4*K]
// c0 [bS, 2*K]
// mask [bS, 2*K], optional
// ct [time, bS, 2*K]
// gradHt [time, bS, 2*K]
// gradCt [bS, 2*K]
// outputs
// gradI [time, bS, 2*K]
// gradWi [time, 2*K, 6*K]
// gradB [bS, 4*K]
// gradC0 [bS, 2*K]
const auto x = reinterpret_cast<const T*>(vx);
const auto wi = reinterpret_cast<const T*>(vwi);
const auto b = reinterpret_cast<const T*>(vb);
const auto c0 = reinterpret_cast<const T*>(vc0);
const auto mask = reinterpret_cast<const T*>(vmask);
const auto ct = reinterpret_cast<const T*>(vct);
const auto gradHt = reinterpret_cast<const T*>(vgradHt);
const auto gradCt = reinterpret_cast<const T*>(vgradCt);
auto gradI = reinterpret_cast<T*>(vgradI);
auto gradWi = reinterpret_cast<T*>(vgradWi);
auto gradB = reinterpret_cast<T*>(vgradB);
auto gradC0 = reinterpret_cast<T*>(vgradC0);
const int rank = 3;
__shared__ int time, K;
__shared__ Nd4jLong len, totalThreads, *sharedMem;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
time = xShapeInfo[1];
K = xShapeInfo[3] / 2;
len = xShapeInfo[2] * xShapeInfo[3]; // 2*K*bS
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
if(tid >= len)
return;
shape::index2coords(tid, rank - 1, xShapeInfo + 2, coords + 1); // loop through last two dimensions of x : {bS, 2*K}
const auto maskOffst = mask ? shape::getOffset(maskShapeInfo, coords + 1) : 0;
const auto c0Offset = shape::getOffset(c0ShapeInfo, coords + 1);
const auto gradCtOffset = shape::getOffset(gradCtShapeInfo, coords + 1);
const auto gradC0Offset = shape::getOffset(gradC0ShapeInfo, coords + 1);
const auto bFOffset = shape::getOffset(bShapeInfo, coords + 2);
const auto bROffset = bFOffset + 2 * K * bShapeInfo[2]; // 2*K*b_stride
// const auto gradBFOffset = shape::getOffset(gradBShapeInfo, coords + 1);
const auto gradBFOffset = coords[1] * gradBShapeInfo[3] / 2 + coords[2] * gradBShapeInfo[4];
const auto gradBROffset = gradBFOffset + gradBShapeInfo[3];
const bool flip = coords[2] >= K;
if(flip)
coords[0] = 0;
else
coords[0] = time - 1;
auto xOffset = shape::getOffset(xShapeInfo, coords);
auto ctOffset = shape::getOffset(ctShapeInfo, coords);
auto gradIOffset = shape::getOffset(gradIShapeInfo, coords);
auto gradHtOffset = shape::getOffset(gradHtShapeInfo, coords);
coords[2] *= 3;
auto gradWiOffset0 = shape::getOffset(gradWiShapeInfo, coords);
auto gradWiOffset1 = gradWiOffset0 + gradWiShapeInfo[rank + 3]; // add last stride
auto gradWiOffset2 = gradWiOffset1 + gradWiShapeInfo[rank + 3]; // add last stride
auto wiOffset0 = shape::getOffset(wiShapeInfo, coords);
auto wiOffset1 = wiOffset0 + wiShapeInfo[rank + 3]; // add last stride
auto wiOffset2 = wiOffset1 + wiShapeInfo[rank + 3]; // add last stride
const T xVal = x[xOffset];
const T maskVal = mask ? mask[maskOffst] : static_cast<T>(1);
const T c0Val = c0[c0Offset];
const T bF = b[bFOffset];
const T bR = b[bROffset];
T gradCtVal = gradCt[gradCtOffset];
T gbF = 0.f;
T gbR = 0.f;
// time loop
for (uint t = 0; t < time; ++t) {
// evaluate sigmoids
T ft = (1.f)/(1.f + nd4j::math::nd4j_exp<T, T>(-(wi[wiOffset1] + bF)));
T rt = (1.f)/(1.f + nd4j::math::nd4j_exp<T, T>(-(wi[wiOffset2] + bR)));
T val = nd4j::math::nd4j_tanh<T,T>(ct[ctOffset]);
T prevVal;
if(t < time-1)
prevVal = ct[ctOffset += flip ? ctShapeInfo[rank + 1] : -ctShapeInfo[rank + 1]];
else
prevVal = c0Val;
// grad wrt input
gradI[gradIOffset] = gradHt[gradHtOffset] - gradHt[gradHtOffset] * rt ;
// grad wrt rt, wiR and bR
T grt = gradHt[gradHtOffset] * (val * maskVal - x[xOffset]) * (rt - rt * rt);
gradWi[gradWiOffset2] = grt;
gbR += grt;
// grad wrt state
T gradC0Val = gradHt[gradHtOffset] * maskVal * (rt - rt * val * val) + gradCtVal;
// grad wrt wi0
gradWi[gradWiOffset0] = gradC0Val - gradC0Val * ft;
// grad wrt ft, wi1, and bF
T gft = gradC0Val * (prevVal - wi[wiOffset0]) * (ft - ft * ft);
gradWi[gradWiOffset1] = gft;
gbF += gft;
// grad wrt c_previous
gradCtVal = gradC0Val * ft;
if(flip) {
xOffset += xShapeInfo[rank + 1]; // first stride, corresponds to time step
gradHtOffset += gradHtShapeInfo[rank + 1];
gradIOffset += gradIShapeInfo[rank + 1];
wiOffset0 += wiShapeInfo[rank + 1];
wiOffset1 += wiShapeInfo[rank + 1];
wiOffset2 += wiShapeInfo[rank + 1];
gradWiOffset0 += gradWiShapeInfo[rank + 1];
gradWiOffset1 += gradWiShapeInfo[rank + 1];
gradWiOffset2 += gradWiShapeInfo[rank + 1];
}
else {
xOffset -= xShapeInfo[rank + 1]; // first stride, corresponds to time step
gradHtOffset -= gradHtShapeInfo[rank + 1];
gradIOffset -= gradIShapeInfo[rank + 1];
wiOffset0 -= wiShapeInfo[rank + 1];
wiOffset1 -= wiShapeInfo[rank + 1];
wiOffset2 -= wiShapeInfo[rank + 1];
gradWiOffset0 -= gradWiShapeInfo[rank + 1];
gradWiOffset1 -= gradWiShapeInfo[rank + 1];
gradWiOffset2 -= gradWiShapeInfo[rank + 1];
}
}
gradB[gradBFOffset] = gbF;
gradB[gradBROffset] = gbR;
gradC0[gradC0Offset] = gradCtVal;
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void sruBIBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo,
const void* vwi, const Nd4jLong* wiShapeInfo,
const void* vb, const Nd4jLong* bShapeInfo,
const void* vc0, const Nd4jLong* c0ShapeInfo,
const void* vmask, const Nd4jLong* maskShapeInfo,
const void* vct, const Nd4jLong* ctShapeInfo,
const void* vgradHt, const Nd4jLong* gradHtShapeInfo,
const void* vgradCt, const Nd4jLong* gradCtShapeInfo,
void* vgradI, const Nd4jLong* gradIShapeInfo,
void* vgradWi, const Nd4jLong* gradWiShapeInfo,
void* vgradB, const Nd4jLong* gradBShapeInfo,
void* vgradC0, const Nd4jLong* gradC0ShapeInfo) {
sruBIBPCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vwi, wiShapeInfo, vb, bShapeInfo, vc0, c0ShapeInfo, vmask, maskShapeInfo, vct, ctShapeInfo, vgradHt, gradHtShapeInfo, vgradCt, gradCtShapeInfo, vgradI, gradIShapeInfo, vgradWi, gradWiShapeInfo, vgradB, gradBShapeInfo, vgradC0, gradC0ShapeInfo);
}
BUILD_SINGLE_TEMPLATE(template void sruBIBPCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, const void* vct, const Nd4jLong* ctShapeInfo, const void* vgradHt, const Nd4jLong* gradHtShapeInfo, const void* vgradCt, const Nd4jLong* gradCtShapeInfo, void* vgradI, const Nd4jLong* gradIShapeInfo, void* vgradWi, const Nd4jLong* gradWiShapeInfo, void* vgradB, const Nd4jLong* gradBShapeInfo, void* vgradC0, const Nd4jLong* gradC0ShapeInfo), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
void sruBIBP(nd4j::LaunchContext* context, NDArray* x, const NDArray* w, const NDArray* b, const NDArray* c0, const NDArray* ct,
const NDArray* gradCt, const NDArray* gradHt, const NDArray* mask,
NDArray* gradI, NDArray* gradW, NDArray* gradB, NDArray* gradC0) {
// x = x * mask
if(mask)
x->applyBroadcast(broadcast::Multiply, {1, 2}, *mask, *x); // apply mask
// U = x * w
NDArray wi = mmul(*x, *w); // U [time x bS x 6*K]
const int time = x->sizeAt(0);
const int bS = x->sizeAt(1);
const int K = x->sizeAt(2) / 2;
NDArray gradBias(x->ordering(), {bS, 4*K}, x->dataType(), context);
NDArray gradWi (x->ordering(), {time, bS, 6*K}, x->dataType(), context);
PointersManager manager(context, "sru_bi_bp");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (x->sizeAt(1) * x->sizeAt(2) + threadsPerBlock - 1) / threadsPerBlock; // loop through last two dimensions of x array -> bS, 2*K
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * x->rankOf() + 128;
NDArray::prepareSpecialUse({gradI, &gradWi, &gradBias, gradC0}, {x, &wi, b, c0, ct, gradCt, gradHt, mask});
BUILD_SINGLE_SELECTOR(x->dataType(), sruBIBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), x->getSpecialBuffer(), x->getSpecialShapeInfo(), wi.getSpecialBuffer(), wi.getSpecialShapeInfo(), b->getSpecialBuffer(), b->getSpecialShapeInfo(), c0->getSpecialBuffer(), c0->getSpecialShapeInfo(), mask ? mask->getSpecialBuffer() : nullptr, mask ? mask->getSpecialShapeInfo() : nullptr, ct->getSpecialBuffer(), ct->getSpecialShapeInfo(), gradHt->getSpecialBuffer(), gradHt->getSpecialShapeInfo(), gradCt->getSpecialBuffer(), gradCt->getSpecialShapeInfo(), gradI->specialBuffer(), gradI->specialShapeInfo(), gradWi.specialBuffer(), gradWi.specialShapeInfo(), gradBias.specialBuffer(), gradBias.specialShapeInfo(), gradC0->specialBuffer(), gradC0->specialShapeInfo()), FLOAT_TYPES);
NDArray::registerSpecialUse({gradI, &gradWi, &gradBias, gradC0}, {x, &wi, b, c0, ct, gradCt, gradHt, mask});
manager.synchronize();
// gradB
gradBias.reduceAlongDimension(reduce::Sum, *gradB, {0}); // [4*K]
// gradW
x->permutei({0, 2, 1}); // [time, bS, 2*K] -> [time, 2*K, bS]
MmulHelper::mmul(x, &gradWi, gradW, 1., 0.); // [time, 2*K, bS] x [time, bS , 6*K] = [time, 2*K, 6*K]
}
}
}
}