cavis/libnd4j/include/ops/declarable/helpers/cuda/segment.cu

135 lines
6.3 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/segment.h>
#include <ops/declarable/helpers/segment_common.h>
#include <NDArrayFactory.h>
#include <helpers/ShapeUtils.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
// -------------------------------------------------------------------------------------------------------------- //
// Sorted segments ops implementations
template <typename T, typename I>
static bool segmentIndicesValidate_(NDArray* indices, NDArray& aexpected, NDArray& aoutput) {
return true;
}
bool segmentIndicesValidate(nd4j::LaunchContext* context , NDArray* indices, NDArray& expected, NDArray& output) {
BUILD_DOUBLE_SELECTOR(output.dataType(), indices->dataType(), return segmentIndicesValidate_, (indices, expected, output), NUMERIC_TYPES, INDEXING_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
// Unsorted segment ops functors implementation
// -------------------------------------------------------------------------------------------------------------- //
template <typename I>
static __global__ void unsortedSegmentIndexValidateKernel(I* indices, Nd4jLong* indicesShape, I expected, I* found) {
__shared__ bool onlyTrue;
__shared__ Nd4jLong len;
if (threadIdx.x == 0) {
onlyTrue = true;
len = shape::length(indicesShape);
}
__syncthreads();
auto start = threadIdx.x + blockIdx.x * blockDim.x;
auto step = gridDim.x * blockDim.x;
for (int e = start; e < len && onlyTrue; e += step) {
nd4j::math::atomics::nd4j_atomicMax(found, indices[e]);
if (expected < *found)
onlyTrue = false;
}
}
template <typename I>
static bool unsortedSegmentIndicesValidate_(nd4j::LaunchContext* context , NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
output = expected;
I found = output;
I exp = expected;
auto stream = context->getCudaStream();
I* devFound;
cudaMalloc(&devFound, sizeof(I));
cudaMemcpy(devFound, &found, sizeof(I), cudaMemcpyHostToDevice);
unsortedSegmentIndexValidateKernel<I><<<1, indices->lengthOf(), 128, *stream>>>(reinterpret_cast<I*>(indices->specialBuffer()), indices->specialShapeInfo(), exp, devFound);
cudaMemcpy(&found, devFound, sizeof(I), cudaMemcpyDeviceToHost);
cudaFree(devFound);
output = found;
return expected == output;
}
bool unsortedSegmentIndicesValidate(nd4j::LaunchContext* context , NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
BUILD_SINGLE_SELECTOR(indices->dataType(), return unsortedSegmentIndicesValidate_, (context, indices, expected, output), INDEXING_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //
// fill up segments starts and ends - splitted ordered case
template <typename I>
static __global__ void fillUpSegmentsKernel(void* indices, Nd4jLong* indexShape, int numClasses, int* classesRangesStart, int* classesRangesLenghts) {
__shared__ I* idxBuf;
__shared__ Nd4jLong idxLen;
__shared__ int* result;
if (threadIdx.x == 0) {
idxBuf = reinterpret_cast<I*>(indices);
idxLen = shape::length(indexShape);
}
__syncthreads();
auto tid = threadIdx.x + blockDim.x * blockIdx.x;
auto step = blockDim.x * gridDim.x;
for (auto j = tid; j < idxLen; j += step) {
auto pos = idxBuf[j];
nd4j::math::atomics::nd4j_atomicMin<int>(&classesRangesStart[pos], (int)j);
nd4j::math::atomics::nd4j_atomicAdd<int>(&classesRangesLenghts[pos], 1);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename I>
static void fillUpSegments_(NDArray* indices, Nd4jLong numClasses, NDArray& classesRangesBegs, NDArray& classesRangesLens) {
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
int* begins = reinterpret_cast<int*>(classesRangesBegs.getSpecialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.getSpecialBuffer());
auto stream = classesRangesBegs.getContext()->getCudaStream();
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream >>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
}
// -------------------------------------------------------------------------------------------------------------- //
void fillUpSegments(NDArray* indices, Nd4jLong numClasses, NDArray& classesRangesBegs, NDArray& classesRangesLens) {
BUILD_SINGLE_SELECTOR(indices->dataType(), fillUpSegments_, (indices, numClasses, classesRangesBegs, classesRangesLens), INDEXING_TYPES);
}
// -------------------------------------------------------------------------------------------------------------- //
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// -------------------------------------------------------------------------------------------------------------- //