110 lines
4.2 KiB
Plaintext
110 lines
4.2 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 30.05.2019
|
|
//
|
|
|
|
|
|
#include <ops/declarable/helpers/one_hot.h>
|
|
#include <array/ResultSet.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <numeric>
|
|
#include <NDArrayFactory.h>
|
|
#include <helpers/TAD.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <PointersManager.h>
|
|
#include <ConstantTadHelper.h>
|
|
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// x - indices, z - output
|
|
template<typename X, typename Z>
|
|
__global__ static void onehotCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const uint axis, const uint depth, const Z on, const Z off) {
|
|
|
|
const auto x = reinterpret_cast<const X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int xRank, zRank;
|
|
__shared__ Nd4jLong zLen, totalThreads, *sharedMem;
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
xRank = shape::rank(xShapeInfo);
|
|
zRank = shape::rank(zShapeInfo);
|
|
zLen = shape::length(zShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto coord = sharedMem + threadIdx.x * zRank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
|
|
|
shape::index2coords(i, zShapeInfo, coord);
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coord);
|
|
const auto depthCoord = coord[axis];
|
|
|
|
for (uint j = axis; j < zRank - 1; ++j)
|
|
coord[j] = coord[j + 1];
|
|
|
|
const auto xOffset = shape::getOffset(xShapeInfo, coord);
|
|
const Nd4jLong idx = x[xOffset];
|
|
z[zOffset] = depthCoord == idx ? on : off;
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
static void onehotCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void *vx, const Nd4jLong *xShapeInfo,
|
|
void *vz, const Nd4jLong *zShapeInfo,
|
|
const uint axis, const uint depth,
|
|
const double on, const double off) {
|
|
|
|
onehotCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, axis, depth, static_cast<Y>(on), static_cast<Y>(off));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void onehot(const nd4j::LaunchContext* context, const NDArray *indices, NDArray *output, const uint axis, const uint depth, const double on, const double off) {
|
|
|
|
const auto xType = indices->dataType();
|
|
const auto zType = output->dataType();
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (output->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(decltype(*output->getShapeInfo())) * output->rankOf() + 128;
|
|
|
|
PointersManager manager(context, "onehot");
|
|
|
|
NDArray::prepareSpecialUse({output}, {indices});
|
|
BUILD_DOUBLE_SELECTOR(xType, zType, onehotCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices->getSpecialBuffer(), indices->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), axis, depth, on, off), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
NDArray::registerSpecialUse({output}, {indices});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
} |