cavis/libnd4j/include/ops/declarable/helpers/cuda/lstm.cu

199 lines
9.8 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 14.02.2018
//
// implementation of operation for LSTM cell with peep hole connections:
// http://www.bioinf.jku.at/publications/older/2604.pdf
// S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.
// and
// https://research.google.com/pubs/archive/43905.pdf
// Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network architectures for large scale acoustic modeling." INTERSPEECH, 2014.
#include<ops/declarable/helpers/lstm.h>
#include<ops/declarable/helpers/lstmBlock.h>
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/transforms.h>
#include <helpers/PointersManager.h>
#include <array/NDArrayList.h>
#include <iterator>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void lstmCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* ht_1, const NDArray* ct_1, const NDArray* Wx, const NDArray* Wh, const NDArray* Wc, const NDArray* Wp, const NDArray* b,
NDArray* ht, NDArray* ct, const std::vector<double>& params) {
// xt input [bS x nIn]
// ht_1 previous cell output [bS x numProj], that is at previous time step t-1, in case of projection=false -> numProj=nOut!!!
// ct_1 previous cell state [bS x nOut], that is at previous time step t-1
// Wx input-to-hidden weights, [nIn x 4*nOut]
// Wh hidden-to-hidden weights, [numProj x 4*nOut]
// Wc diagonal weights for peephole connections [3*nOut]
// Wp projection weights [nOut x numProj]
// b biases, [4*nOut]
// ht current cell output [bS x numProj], that is at current time step t
// ct current cell state [bS x nOut], that is at current time step t
const bool peephole = (bool)params[0]; // if true, provide peephole connections
const bool projection = (bool)params[1]; // if true, then projection is performed, if false then numProj==nOut is mandatory!!!!
double clippingCellValue = params[2]; // clipping value for ct, if it is not equal to zero, then cell state is clipped
double clippingProjValue = params[3]; // clipping value for projected ht, if it is not equal to zero, then projected cell output is clipped
const double forgetBias = params[4];
const int bS = xt->sizeAt(0);
const int nIn = xt->sizeAt(1);
const int numProj = ht_1->sizeAt(1);
const int nOut = ct_1->sizeAt(1);
auto z = mmul(*xt, *Wx) + mmul(*ht_1, *Wh) + *b; // [bS x 4*nOut] + [bS x 4*nOut] + [1 x 4*nOut] = [bS x 4*nOut]
auto zit = z({0,0, 0,nOut}); // z for input gate, = mmul(Wxi,xt) + mmul(Whi,ht_1) + bi = [bS x nOut]
auto zft = z({0,0, nOut,2*nOut}); // z for forget gate, = mmul(Wxf,xt) + mmul(Whf,ht_1) + bf = [bS x nOut]
auto zct = z({0,0, 2*nOut,3*nOut}); // z for cell state, = mmul(Wxc,xt) + mmul(Whc,ht_1) + bc = [bS x nOut]
auto zot = z({0,0, 3*nOut,4*nOut}); // z for output gate, = mmul(Wxo,xt) + mmul(Who,ht_1) + bo = [bS x nOut]
if(peephole) { // add peephole connections: z + ct_1*Wc
zit += (*ct_1) * (*Wc)({0, nOut}); // add peephole connections to input gate
zft += (*ct_1) * (*Wc)({nOut, 2*nOut}); // add peephole connections to forget gate
}
// current sell state = ft*ct_1 + it*tanh(mmul(Wxc,xt) + mmul(Whc,ht_1) + bc
ct->assign( sigmoid(zft + forgetBias) * (*ct_1) + sigmoid(zit) * tanh(zct) );
// if clipping value is provided then cell state is clipped by this value prior to the cell output activation
if(clippingCellValue > 0.0)
ct->applyScalar(scalar::LstmClip, clippingCellValue, *ct);
if(peephole)
zot += (*ct) * (*Wc)({{2*nOut, 3*nOut}}); // add peephole connections to output gate zot + ct*Wc
// current cell output = ot*tanh(ct)
auto htNoPeepHole = sigmoid(zot) * tanh(*ct); // = [bS x nOut]
// apply projection
if(projection) {
ht->assign( mmul(htNoPeepHole, *Wp) ); // [bS x nOut] * [ nOut x numProj] = [bS x numProj]
// if clipping projection is provided then projected cell output state is clipped by this value
if(clippingProjValue != 0.)
ht->applyScalar(scalar::LstmClip, clippingProjValue, *ht);
}
else
ht->assign(&htNoPeepHole);
}
void lstmBlockCell(const NDArray* xt, const NDArray* cLast, const NDArray* yLast,
const NDArray* W, const NDArray* Wci, const NDArray* Wcf, const NDArray* Wco, const NDArray* b,
NDArray* i, NDArray* c, NDArray* f, NDArray* o, NDArray* z, NDArray* h, NDArray* y, const std::vector<double>& params) {
/* Input arrays:
* 0: xt - input [bS, nIn] at time t
* 1: cLast (cs_prev) - previous cell state [bS, nOut], time t-1
* 2: yLast (h_prev) - previous output [bS, nOut], time t-1
* 3: W - Weights - concatenated (input-to-hidden, hidden-to-hidden weights) weights, [(nIn+nOut), 4*nOut]
* 4: Wci - weights - cell peephole (t-1) connections to input modulation gate, [nOut]
* 5: Wcf - weights - cell peephole (t-1) connections to forget gate, [nOut]
* 6: Wco - weights - cell peephole (t) connections to output gate, [nOut]
* 7: b - biases, [4*nOut]
*
* Input integer arguments:
* 0: if not zero, provide peephole connections
*
* Input float arguments:
* 0: the bias added to forget gates in order to reduce the scale of forgetting in the beginning of the training
* 1: clipping value for cell state, if it is not equal to zero, then cell state is clipped
*
* Output arrays:
* 0: i - Input modulation gate activations [bS, nOut]
* 1: c (cs) - Cell state (pre tanh) [bs, nOut] (cs)
* 2: f - Output - forget gate activations [bs, nOut]
* 3: o - Output - output gate activations [bs, nOut]
* 4: z (ci) - Output - block input [bs, nOut]
* 5: h (co) - Cell state, post tanh [bs, nOut]
* 6: y (h) - Current cell output [bS, nOut], time t
*/
const bool peephole = (bool)params[0]; // if true, provide peephole connections
const double forgetBias = params[1];
const double clippingCellValue = params[2]; // clipping value for ct, if it is not equal to zero, then cell state is clipped
const int bS = xt->sizeAt(0);
const int nIn = xt->sizeAt(1);
const int nOut = cLast->sizeAt(1);
//Concat inputs: [xt, yt-1]: concat([bs,nIn],[bs,nOut]) -> [bs, (nIn+nOut)]
NDArray concatOut(xt->ordering(), {xt->sizeAt(0), xt->sizeAt(1) + yLast->sizeAt(1)}, xt->dataType(), xt->getContext());
helpers::concat(xt->getContext(), {const_cast<NDArray*>(xt), const_cast<NDArray*>(yLast)}, concatOut, {1});
auto m = mmul(concatOut, *W); // mmul: [bs, (nIn+nOut)] * [(nIn+nOut), 4*nOut] = [bs, 4*nOut]
m += (*b); // addiRowVector
//Note: weights are ordered [inputGate, blockInput, forgetGate, outputGate] to match TF (TF code comments state [i,f,z/ci,o] but behaviour is [i,z,f,o])
auto zi = m({0,0, 0, nOut}); // z for input modulation gate, [bS, nOut]
auto zz = m({0,0, nOut, 2*nOut}); // z for block input, [bS, nOut]
auto zf = m({0,0, 2*nOut, 3*nOut}); // z for forget gate, [bS, nOut]
auto zo = m({0,0, 3*nOut, 4*nOut}); // z for output gate, [bS, nOut]
if(peephole) { // add peephole connections: z + ct_1*Wc
zi += (*cLast) * (*Wci); // add peephole connections to input gate
zf += (*cLast) * (*Wcf); // add peephole connections to forget gate
}
// current sell state = ft*cLast + it*tanh(mmul(Wxc,xt) + mmul(Whc,ht_1) + bc
if(forgetBias != 0.0)
zf += forgetBias;
zz.applyTransform(transform::Tanh, *z); //z = tanh(zz)
zi.applyTransform(transform::Sigmoid, *i); //i = sigmoid(zi)
zf.applyTransform(transform::Sigmoid, *f); //f = sigmoid(zf);
//cell state = blockInput .* inputGate + prevCellState .* forgetGate
z->applyPairwiseTransform(pairwise::Multiply, *i, *c); //c = z * i
auto temp = (*f) * (*cLast);
*c += temp; //c = (i * z) + (zf * (*cLast))
c->applyTransform(transform::Tanh, *h); //h = tanh(c)
// if clipping value is provided then cell state is clipped by this value prior to the cell output activation
if(clippingCellValue > 0.0)
c->applyScalar(scalar::LstmClip, clippingCellValue, *c);
if(peephole) {
// add peephole connections to output gate zot + ct*Wc
auto prod = *c * (*Wco);
zo += prod;
}
zo.applyTransform(transform::Sigmoid, *o); // o = sigmoid(zo)
// current cell output = ot*tanh(ct)
c->applyTransform(transform::Tanh, *h); //h = tanh(c)
o->applyPairwiseTransform(pairwise::Multiply, *h, *y); //y = o * h
}
}
}
}