cavis/libnd4j/include/ops/declarable/helpers/cuda/imagesHelpers.cu

426 lines
19 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#include <op_boilerplate.h>
#include <ops/declarable/helpers/imagesHelpers.h>
#include <helpers/ConstantTadHelper.h>
#include <ops/declarable/helpers/adjust_hue.h>
#include <PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void rgbToYuvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
rgbYuv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void rgbToYuvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
rgbToYuvCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformRgbYuv(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), { dimC });
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), { dimC });
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "yuv_to_rgb");
NDArray::prepareSpecialUse({ &output }, { &input });
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToYuvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({ &output }, { &input });
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void yuvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
yuvRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void yuvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
yuvToRgbCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformYuvRgb(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), { dimC });
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), { dimC });
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "yuv_to_rgb");
NDArray::prepareSpecialUse({ &output }, { &input });
BUILD_SINGLE_SELECTOR(input.dataType(), yuvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({ &output }, { &input });
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// for example xShapeInfo = {2,3,4}, zShapeInfo = {2,1,4}
template<typename T>
__global__ void rgbToGrsCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, *sharedMem;
__shared__ int rank; // xRank == zRank
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
zLen = shape::length(zShapeInfo);
rank = shape::rank(zShapeInfo);
}
__syncthreads();
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x) {
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
const auto xStep = i*3;
z[i] = 0.2989f * x[xStep] + 0.5870f * x[xStep + 1] + 0.1140f * x[xStep + 2];
}
else {
shape::index2coords(i, zShapeInfo, coords);
const auto zOffset = shape::getOffset(zShapeInfo, coords);
const auto xOffset0 = shape::getOffset(xShapeInfo, coords);
const auto xOffset1 = xOffset0 + shape::stride(xShapeInfo)[dimC];
const auto xOffset2 = xOffset1 + shape::stride(xShapeInfo)[dimC];
z[zOffset] = 0.2989f * x[xOffset0] + 0.5870f * x[xOffset1] + 0.1140f * x[xOffset2];
}
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void rgbToGrsCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
rgbToGrsCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, dimC);
}
///////////////////////////////////////////////////////////////////
void transformRgbGrs(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
PointersManager manager(context, "rgbToGrs");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
NDArray::prepareSpecialUse({&output}, {&input});
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToGrsCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), dimC), NUMERIC_TYPES);
NDArray::registerSpecialUse({&output}, {&input});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template <typename T>
static void _CUDA_G rgbToHsvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
rgbToHsv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
static void _CUDA_G hsvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
hsvToRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static _CUDA_H void hsvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
hsvToRgbCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
template<typename T>
static _CUDA_H void rgbToHsvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
rgbToHsvCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformHsvRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "hsv_to_rgb");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), hsvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
void transformRgbHsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "rgb_to_hsv");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), rgbToHsvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
template<typename T>
__global__ void tripleTransformerCuda(const void *vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, void *vz, const Nd4jLong *zShapeInfo, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const int dimC, int mode, uint64_t numTads) {
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, *sharedMem;
__shared__ int rank; // xRank == zRank
float yiqarr[3][3] = {
{ 0.299f, 0.59590059f, 0.2115f },
{ 0.587f, -0.27455667f, -0.52273617f },
{ 0.114f, -0.32134392f, 0.31119955f }
};
float rgbarr[3][3] = {
{ 1.f, 1.f, 1.f },
{ 0.95598634f, -0.27201283f, -1.10674021f },
{ 0.6208248f, -0.64720424f, 1.70423049f }
};
auto tr = mode == 1? yiqarr : rgbarr;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
zLen = shape::length(zShapeInfo);
rank = shape::rank(zShapeInfo);
}
__syncthreads();
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
for (uint64_t f = blockIdx.x * blockDim.x + threadIdx.x; f < zLen / 3; f += gridDim.x * blockDim.x) {
auto i = f * 3;
auto xi0 = x[i];
auto xi1 = x[i+1];
auto xi2 = x[i+2];
for (int e = 0; e < 3; e++)
z[i + e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
}
} else {
// TAD based case
const Nd4jLong xDimCstride = shape::stride(xShapeInfo)[dimC];
const Nd4jLong zDimCstride = shape::stride(zShapeInfo)[dimC];
for (uint64_t i = blockIdx.x * blockDim.x + threadIdx.x; i < numTads; i += blockDim.x * gridDim.x) {
const T* xTad = x + xOffsets[i];
T* zTad = z + zOffsets[i];
auto xi0 = xTad[0];
auto xi1 = xTad[xDimCstride];
auto xi2 = xTad[xDimCstride * 2];
for (int e = 0; e < 3; e++)
zTad[zDimCstride * e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
}
}
}
template <typename T>
static void rgbYiq(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
NDArray::prepareSpecialUse({output}, {input});
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 1, packZ.numberOfTads());
NDArray::registerSpecialUse({output}, {input});
}
template <typename T>
FORCEINLINE static void yiqRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
NDArray::prepareSpecialUse({output}, {input});
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 2, packZ.numberOfTads());
NDArray::registerSpecialUse({output}, {input});
}
void transformYiqRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), yiqRgb, (context, input, output, dimC), FLOAT_TYPES);
}
void transformRgbYiq(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), rgbYiq, (context, input, output, dimC), FLOAT_TYPES);
}
}
}
}