426 lines
19 KiB
Plaintext
426 lines
19 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#include <ops/declarable/helpers/imagesHelpers.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <ops/declarable/helpers/adjust_hue.h>
|
|
#include <PointersManager.h>
|
|
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ void rgbToYuvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong xDimCstride, zDimCstride;
|
|
|
|
if (threadIdx.x == 0) {
|
|
rank = shape::rank(xShapeInfo);
|
|
xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
|
|
const T* xTad = x + xTadOffsets[i];
|
|
T* zTad = z + zTadOffsets[i];
|
|
|
|
rgbYuv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
|
}
|
|
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
linkage void rgbToYuvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
rgbToYuvCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void transformRgbYuv(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), { dimC });
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), { dimC });
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(context, "yuv_to_rgb");
|
|
|
|
NDArray::prepareSpecialUse({ &output }, { &input });
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToYuvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({ &output }, { &input });
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ void yuvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong xDimCstride, zDimCstride;
|
|
|
|
if (threadIdx.x == 0) {
|
|
rank = shape::rank(xShapeInfo);
|
|
xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
|
|
const T* xTad = x + xTadOffsets[i];
|
|
T* zTad = z + zTadOffsets[i];
|
|
|
|
yuvRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
|
}
|
|
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
linkage void yuvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
yuvToRgbCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void transformYuvRgb(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), { dimC });
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), { dimC });
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(context, "yuv_to_rgb");
|
|
|
|
NDArray::prepareSpecialUse({ &output }, { &input });
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), yuvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({ &output }, { &input });
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// for example xShapeInfo = {2,3,4}, zShapeInfo = {2,1,4}
|
|
template<typename T>
|
|
__global__ void rgbToGrsCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ Nd4jLong zLen, *sharedMem;
|
|
__shared__ int rank; // xRank == zRank
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
zLen = shape::length(zShapeInfo);
|
|
rank = shape::rank(zShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
|
|
|
|
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x) {
|
|
|
|
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
|
|
const auto xStep = i*3;
|
|
z[i] = 0.2989f * x[xStep] + 0.5870f * x[xStep + 1] + 0.1140f * x[xStep + 2];
|
|
}
|
|
else {
|
|
|
|
shape::index2coords(i, zShapeInfo, coords);
|
|
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
const auto xOffset0 = shape::getOffset(xShapeInfo, coords);
|
|
const auto xOffset1 = xOffset0 + shape::stride(xShapeInfo)[dimC];
|
|
const auto xOffset2 = xOffset1 + shape::stride(xShapeInfo)[dimC];
|
|
|
|
z[zOffset] = 0.2989f * x[xOffset0] + 0.5870f * x[xOffset1] + 0.1140f * x[xOffset2];
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
linkage void rgbToGrsCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
|
|
|
|
rgbToGrsCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, dimC);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void transformRgbGrs(nd4j::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
|
|
|
|
PointersManager manager(context, "rgbToGrs");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&input});
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToGrsCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), dimC), NUMERIC_TYPES);
|
|
NDArray::registerSpecialUse({&output}, {&input});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void _CUDA_G rgbToHsvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
|
|
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong xDimCstride, zDimCstride;
|
|
|
|
if (threadIdx.x == 0) {
|
|
rank = shape::rank(xShapeInfo);
|
|
xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
|
|
const T* xTad = x + xTadOffsets[i];
|
|
T* zTad = z + zTadOffsets[i];
|
|
|
|
rgbToHsv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void _CUDA_G hsvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
|
|
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong xDimCstride, zDimCstride;
|
|
|
|
if (threadIdx.x == 0) {
|
|
rank = shape::rank(xShapeInfo);
|
|
xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
|
|
const T* xTad = x + xTadOffsets[i];
|
|
T* zTad = z + zTadOffsets[i];
|
|
|
|
hsvToRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static _CUDA_H void hsvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
|
|
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
hsvToRgbCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
|
|
}
|
|
|
|
template<typename T>
|
|
static _CUDA_H void rgbToHsvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
|
|
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const Nd4jLong numOfTads, const int dimC) {
|
|
|
|
rgbToHsvCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void transformHsvRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(context, "hsv_to_rgb");
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), hsvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void transformRgbHsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {dimC});
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {dimC});
|
|
|
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(context, "rgb_to_hsv");
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), rgbToHsvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
template<typename T>
|
|
__global__ void tripleTransformerCuda(const void *vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, void *vz, const Nd4jLong *zShapeInfo, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const int dimC, int mode, uint64_t numTads) {
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ Nd4jLong zLen, *sharedMem;
|
|
__shared__ int rank; // xRank == zRank
|
|
|
|
float yiqarr[3][3] = {
|
|
{ 0.299f, 0.59590059f, 0.2115f },
|
|
{ 0.587f, -0.27455667f, -0.52273617f },
|
|
{ 0.114f, -0.32134392f, 0.31119955f }
|
|
};
|
|
|
|
float rgbarr[3][3] = {
|
|
{ 1.f, 1.f, 1.f },
|
|
{ 0.95598634f, -0.27201283f, -1.10674021f },
|
|
{ 0.6208248f, -0.64720424f, 1.70423049f }
|
|
};
|
|
|
|
auto tr = mode == 1? yiqarr : rgbarr;
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
zLen = shape::length(zShapeInfo);
|
|
rank = shape::rank(zShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
|
|
|
|
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
|
|
for (uint64_t f = blockIdx.x * blockDim.x + threadIdx.x; f < zLen / 3; f += gridDim.x * blockDim.x) {
|
|
auto i = f * 3;
|
|
|
|
auto xi0 = x[i];
|
|
auto xi1 = x[i+1];
|
|
auto xi2 = x[i+2];
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
z[i + e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
|
|
}
|
|
} else {
|
|
// TAD based case
|
|
const Nd4jLong xDimCstride = shape::stride(xShapeInfo)[dimC];
|
|
const Nd4jLong zDimCstride = shape::stride(zShapeInfo)[dimC];
|
|
|
|
for (uint64_t i = blockIdx.x * blockDim.x + threadIdx.x; i < numTads; i += blockDim.x * gridDim.x) {
|
|
const T* xTad = x + xOffsets[i];
|
|
T* zTad = z + zOffsets[i];
|
|
|
|
auto xi0 = xTad[0];
|
|
auto xi1 = xTad[xDimCstride];
|
|
auto xi2 = xTad[xDimCstride * 2];
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
zTad[zDimCstride * e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
static void rgbYiq(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 1, packZ.numberOfTads());
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
template <typename T>
|
|
FORCEINLINE static void yiqRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 2, packZ.numberOfTads());
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
void transformYiqRgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), yiqRgb, (context, input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
void transformRgbYiq(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), rgbYiq, (context, input, output, dimC), FLOAT_TYPES);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|