415 lines
22 KiB
Plaintext
415 lines
22 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/image_suppression.h>
|
|
#include <NDArrayFactory.h>
|
|
#include <NativeOps.h>
|
|
#include <cuda_exception.h>
|
|
#include <queue>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// needToSuppressWithThreshold - predicate for suppression
|
|
// boxes - boxes tensor buffer
|
|
// boxesShape boxes tensor shape
|
|
// previousIndex - index for current pos value
|
|
// nextIndex - index for neighbor pos value
|
|
// threshold - threashold value to suppress
|
|
//
|
|
// return value: true, if threshold is overcome, false otherwise
|
|
//
|
|
template <typename T>
|
|
static __device__ bool needToSuppressWithThreshold(T* boxes, Nd4jLong* boxesShape, int previousIndex, int nextIndex, T threshold) {
|
|
Nd4jLong previous0[] = {previousIndex, 0};
|
|
Nd4jLong previous1[] = {previousIndex, 1};
|
|
Nd4jLong previous2[] = {previousIndex, 2};
|
|
Nd4jLong previous3[] = {previousIndex, 3};
|
|
Nd4jLong next0[] = {nextIndex, 0};
|
|
Nd4jLong next1[] = {nextIndex, 1};
|
|
Nd4jLong next2[] = {nextIndex, 2};
|
|
Nd4jLong next3[] = {nextIndex, 3};
|
|
|
|
// we have rectangle with given max values. Compute vexes of rectangle first
|
|
|
|
T minYPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
|
|
T minXPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
|
|
T maxYPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
|
|
T maxXPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
|
|
T minYNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
|
|
T minXNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
|
|
T maxYNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
|
|
T maxXNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
|
|
|
|
// compute areas for comparation
|
|
T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev);
|
|
T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext);
|
|
|
|
// of course, areas should be positive
|
|
if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false;
|
|
|
|
// compute intersection of rectangles
|
|
T minIntersectionY = nd4j::math::nd4j_max(minYPrev, minYNext);
|
|
T minIntersectionX = nd4j::math::nd4j_max(minXPrev, minXNext);
|
|
T maxIntersectionY = nd4j::math::nd4j_min(maxYPrev, maxYNext);
|
|
T maxIntersectionX = nd4j::math::nd4j_min(maxXPrev, maxXNext);
|
|
T intersectionArea =
|
|
nd4j::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) *
|
|
nd4j::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f));
|
|
T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea);
|
|
// final check
|
|
return intersectionValue > threshold;
|
|
}
|
|
|
|
template <typename T>
|
|
static __device__ T similirityV3(T* boxes, Nd4jLong* boxesShape, int previousIndex, int nextIndex) {
|
|
Nd4jLong previous0[] = {previousIndex, 0};
|
|
Nd4jLong previous1[] = {previousIndex, 1};
|
|
Nd4jLong previous2[] = {previousIndex, 2};
|
|
Nd4jLong previous3[] = {previousIndex, 3};
|
|
Nd4jLong next0[] = {nextIndex, 0};
|
|
Nd4jLong next1[] = {nextIndex, 1};
|
|
Nd4jLong next2[] = {nextIndex, 2};
|
|
Nd4jLong next3[] = {nextIndex, 3};
|
|
|
|
// we have rectangle with given max values. Compute vexes of rectangle first
|
|
|
|
T minYPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
|
|
T minXPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
|
|
T maxYPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
|
|
T maxXPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
|
|
T minYNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
|
|
T minXNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
|
|
T maxYNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
|
|
T maxXNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
|
|
|
|
// compute areas for comparation
|
|
T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev);
|
|
T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext);
|
|
|
|
// of course, areas should be positive
|
|
if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false;
|
|
|
|
// compute intersection of rectangles
|
|
T minIntersectionY = nd4j::math::nd4j_max(minYPrev, minYNext);
|
|
T minIntersectionX = nd4j::math::nd4j_max(minXPrev, minXNext);
|
|
T maxIntersectionY = nd4j::math::nd4j_min(maxYPrev, maxYNext);
|
|
T maxIntersectionX = nd4j::math::nd4j_min(maxXPrev, maxXNext);
|
|
T intersectionArea =
|
|
nd4j::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) *
|
|
nd4j::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f));
|
|
T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea);
|
|
// final check
|
|
return intersectionValue;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// shouldSelectKernel - compute status for all selected rectangles (boxes)
|
|
//
|
|
// we compute boolean flag as shared uint32 and return it on final only for the first thread
|
|
//
|
|
template <typename T, typename I>
|
|
static __global__ void shouldSelectKernel(T* boxesBuf, Nd4jLong* boxesShape, I* indexBuf, I* selectedIndicesData, double threshold, int numSelected, int i, bool* shouldSelect) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = gridDim.x * blockDim.x;
|
|
__shared__ unsigned int shouldSelectShared;
|
|
if (threadIdx.x == 0) {
|
|
shouldSelectShared = (unsigned int)shouldSelect[0];
|
|
}
|
|
__syncthreads();
|
|
for (int j = numSelected - 1 - tid; j >= 0; j -= step) {
|
|
if (shouldSelectShared) {
|
|
if (needToSuppressWithThreshold(boxesBuf, boxesShape, indexBuf[i],
|
|
indexBuf[selectedIndicesData[j]], T(threshold)))
|
|
atomicCAS(&shouldSelectShared, 1, 0); // exchange only when need to suppress
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
// final move: collect result
|
|
if (threadIdx.x == 0) {
|
|
*shouldSelect = shouldSelectShared > 0;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// indices - type depended, indicesLong - type defined (only 64bit integers)
|
|
//
|
|
template <typename I>
|
|
static __global__ void copyIndices(void* indices, void* indicesLong, Nd4jLong len) {
|
|
I* indexBuf = reinterpret_cast<I*>(indices);
|
|
Nd4jLong* srcBuf = reinterpret_cast<Nd4jLong*>(indicesLong);;
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
for (auto i = tid; i < len; i += step)
|
|
indexBuf[i] = (I)srcBuf[i];
|
|
}
|
|
|
|
template <typename T, typename I>
|
|
static __global__ void suppressScores(T* scores, I* indices, Nd4jLong length, T scoreThreshold) {
|
|
auto start = blockIdx.x * blockDim.x;
|
|
auto step = gridDim.x * blockDim.x;
|
|
|
|
for (auto e = start + threadIdx.x; e < (int)length; e += step) {
|
|
if (scores[e] < scoreThreshold) {
|
|
scores[e] = scoreThreshold;
|
|
indices[e] = -1;
|
|
}
|
|
else {
|
|
indices[e] = I(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// nonMaxSuppressionV2 algorithm - given from TF NonMaxSuppressionV2 implementation
|
|
//
|
|
template <typename T, typename I>
|
|
static void nonMaxSuppressionV2_(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) {
|
|
auto stream = context->getCudaStream();
|
|
NDArray::prepareSpecialUse({output}, {boxes, scales});
|
|
std::unique_ptr<NDArray> indices(NDArrayFactory::create_<I>('c', {scales->lengthOf()})); // - 1, scales->lengthOf()); //, scales->getContext());
|
|
|
|
NDArray scores(*scales);
|
|
Nd4jPointer extras[2] = {nullptr, stream};
|
|
auto indexBuf = indices->dataBuffer()->specialAsT<I>();///reinterpret_cast<I*>(indices->specialBuffer());
|
|
auto scoreBuf = scores.dataBuffer()->specialAsT<T>();
|
|
suppressScores<T,I><<<128, 128, 128, *stream>>>(scoreBuf, indexBuf, scores.lengthOf(), T(scoreThreshold));
|
|
indices->tickWriteDevice();
|
|
sortByValue(extras, indices->buffer(), indices->shapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), scores.buffer(), scores.shapeInfo(), scores.specialBuffer(), scores.specialShapeInfo(), true);
|
|
indices->tickWriteDevice();
|
|
NDArray selectedIndices = NDArrayFactory::create<I>('c', {output->lengthOf()});
|
|
int numSelected = 0;
|
|
int numBoxes = boxes->sizeAt(0);
|
|
auto boxesBuf = reinterpret_cast<T*>(boxes->specialBuffer());
|
|
|
|
auto selectedIndicesData = reinterpret_cast<I*>(selectedIndices.specialBuffer());
|
|
auto outputBuf = reinterpret_cast<I*>(output->specialBuffer());
|
|
|
|
bool* shouldSelectD;
|
|
auto err = cudaMalloc(&shouldSelectD, sizeof(bool));
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot allocate memory for bool flag", err);
|
|
}
|
|
for (I i = 0; i < boxes->sizeAt(0); ++i) {
|
|
bool shouldSelect = numSelected < output->lengthOf();
|
|
if (shouldSelect) {
|
|
err = cudaMemcpy(shouldSelectD, &shouldSelect, sizeof(bool), cudaMemcpyHostToDevice);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to device", err);
|
|
}
|
|
|
|
shouldSelectKernel<T,I><<<128, 256, 1024, *stream>>>(boxesBuf, boxes->specialShapeInfo(), indexBuf, selectedIndicesData, threshold, numSelected, i, shouldSelectD);
|
|
err = cudaMemcpy(&shouldSelect, shouldSelectD, sizeof(bool), cudaMemcpyDeviceToHost);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to host", err);
|
|
}
|
|
}
|
|
|
|
if (shouldSelect) {
|
|
cudaMemcpy(reinterpret_cast<I*>(output->specialBuffer()) + numSelected, indexBuf + i, sizeof(I), cudaMemcpyDeviceToDevice);
|
|
cudaMemcpy(selectedIndicesData + numSelected, &i, sizeof(I), cudaMemcpyHostToDevice);
|
|
numSelected++;
|
|
}
|
|
}
|
|
|
|
err = cudaFree(shouldSelectD);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot deallocate memory for bool flag", err);
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename I>
|
|
static __device__ bool checkOverlapBoxes(T* boxes, Nd4jLong* shape, T* scores, I* indices, I* selectedIndices, I* startIndices, I selectedSize, I nextCandidateIndex, T overlapThreshold, T scoreThreshold, bool simple) {
|
|
bool shouldHardSuppress = false;
|
|
T& nextCandidateScore = scores[nextCandidateIndex];
|
|
I selectedIndex = indices[nextCandidateIndex];
|
|
I finish = startIndices[nextCandidateIndex];
|
|
|
|
for (int j = selectedSize; j > finish; --j) {
|
|
T boxVal;
|
|
if (simple) {
|
|
Nd4jLong xPos[] = {selectedIndex, selectedIndices[j - 1]};
|
|
auto xShift = shape::getOffset(shape, xPos, 0);
|
|
boxVal = boxes[xShift];
|
|
}
|
|
else {
|
|
boxVal = similirityV3(boxes, shape, selectedIndex, selectedIndices[j - 1]);
|
|
}
|
|
if (boxVal > static_cast<T>(overlapThreshold))
|
|
nextCandidateScore = static_cast<T>(0.f);
|
|
|
|
// First decide whether to perform hard suppression
|
|
if (boxVal >= overlapThreshold) {
|
|
shouldHardSuppress = true;
|
|
break;
|
|
}
|
|
|
|
// If nextCandidate survives hard suppression, apply soft suppression
|
|
if (nextCandidateScore <= static_cast<T>(scoreThreshold)) break;
|
|
}
|
|
|
|
return shouldHardSuppress;
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename I>
|
|
static __global__ void
|
|
suppressNonMaxOverlapKernel(T* boxes, Nd4jLong* boxesShape, T* scoresData, I* indices, I* startIndices, Nd4jLong length, I maxOutputLen,
|
|
T overlapThreshold, T scoreThreshold, I* output, Nd4jLong* outputShape, I* outputLength, bool simple) {
|
|
|
|
__shared__ I selectedSize;
|
|
__shared__ I* tempOutput;
|
|
|
|
if (threadIdx.x == 0) {
|
|
selectedSize = outputLength?*outputLength:maxOutputLen;
|
|
extern __shared__ unsigned char shmem[];
|
|
tempOutput = (I*)shmem;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto start = blockIdx.x * blockDim.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
for (I nextCandidateIndex = start + threadIdx.x; selectedSize < maxOutputLen && nextCandidateIndex < (I)length; ) {
|
|
auto originalScore = scoresData[nextCandidateIndex];//nextCandidate._score;
|
|
I nextCandidateBoxIndex = indices[nextCandidateIndex];
|
|
auto selectedSizeMark = selectedSize;
|
|
|
|
// skip for cases when index is less than 0 (under score threshold)
|
|
if (nextCandidateBoxIndex < 0) {
|
|
nextCandidateIndex += step;
|
|
continue;
|
|
}
|
|
// check for overlaps
|
|
bool shouldHardSuppress = checkOverlapBoxes(boxes, boxesShape, scoresData, indices, tempOutput, startIndices, selectedSize,
|
|
nextCandidateIndex, overlapThreshold, scoreThreshold, simple);//false;
|
|
T nextCandidateScore = scoresData[nextCandidateIndex];
|
|
|
|
startIndices[nextCandidateIndex] = selectedSize;
|
|
if (!shouldHardSuppress) {
|
|
if (nextCandidateScore == originalScore) {
|
|
// Suppression has not occurred, so select nextCandidate
|
|
if (output)
|
|
output[selectedSize] = nextCandidateBoxIndex;
|
|
tempOutput[selectedSize] = nextCandidateBoxIndex;
|
|
math::atomics::nd4j_atomicAdd(&selectedSize, (I)1);
|
|
}
|
|
|
|
if (nextCandidateScore > scoreThreshold) {
|
|
// Soft suppression has occurred and current score is still greater than
|
|
// scoreThreshold; add nextCandidate back onto priority queue.
|
|
continue; // in some cases, this index not 0
|
|
}
|
|
}
|
|
nextCandidateIndex += step;
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
if (outputLength)
|
|
*outputLength = selectedSize;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename I>
|
|
static Nd4jLong
|
|
nonMaxSuppressionGeneric_(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int outputSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output, bool simple) {
|
|
auto stream = context->getCudaStream();
|
|
if (output)
|
|
NDArray::prepareSpecialUse({output}, {boxes, scores});
|
|
else {
|
|
if (!boxes->isActualOnDeviceSide())
|
|
boxes->syncToDevice();
|
|
if (!scores->isActualOnDeviceSide())
|
|
scores->syncToDevice();
|
|
}
|
|
|
|
NDArray indices = NDArrayFactory::create<I>('c', {scores->lengthOf()}); // - 1, scales->lengthOf()); //, scales->getContext());
|
|
NDArray startPositions = NDArrayFactory::create<I>('c', {scores->lengthOf()});
|
|
NDArray selectedScores(*scores);
|
|
Nd4jPointer extras[2] = {nullptr, stream};
|
|
auto indexBuf = indices.dataBuffer()->specialAsT<I>();///reinterpret_cast<I*>(indices->specialBuffer());
|
|
|
|
suppressScores<<<128, 128, 128, *stream>>>(selectedScores.dataBuffer()->specialAsT<T>(), indexBuf, selectedScores.lengthOf(), T(scoreThreshold));
|
|
|
|
sortByValue(extras, indices.buffer(), indices.shapeInfo(), indices.specialBuffer(), indices.specialShapeInfo(), selectedScores.buffer(), selectedScores.shapeInfo(), selectedScores.specialBuffer(), selectedScores.specialShapeInfo(), true);
|
|
indices.tickWriteDevice();
|
|
selectedScores.tickWriteDevice();
|
|
|
|
auto scoresData = selectedScores.dataBuffer()->specialAsT<T>();//, numBoxes, scoresData.begin());
|
|
|
|
auto startIndices = startPositions.dataBuffer()->specialAsT<I>();
|
|
I selectedSize = 0;
|
|
Nd4jLong res = 0;
|
|
if (output) { // this part used when output shape already calculated to fill up values on output
|
|
DataBuffer selectedSizeBuf(&selectedSize, sizeof(I), DataTypeUtils::fromT<I>());
|
|
suppressNonMaxOverlapKernel<<<1, 1, 1024, *stream >>> (boxes->dataBuffer()->specialAsT<T>(),
|
|
boxes->specialShapeInfo(), scoresData, indexBuf, startIndices, scores->lengthOf(), (I) outputSize,
|
|
T(overlapThreshold), T(scoreThreshold), output->dataBuffer()->specialAsT<I>(), output->specialShapeInfo(),
|
|
selectedSizeBuf.specialAsT<I>(), simple);
|
|
}
|
|
else { // this case used on calculation of output shape. Output and output shape shoulde be nullptr.
|
|
DataBuffer selectedSizeBuf(&selectedSize, sizeof(I), DataTypeUtils::fromT<I>());
|
|
suppressNonMaxOverlapKernel<<<1, 1, 1024, *stream >>> (boxes->dataBuffer()->specialAsT<T>(),
|
|
boxes->specialShapeInfo(), scoresData, indexBuf, startIndices, scores->lengthOf(), (I)outputSize,
|
|
T(overlapThreshold), T(scoreThreshold), (I*)nullptr, (Nd4jLong*) nullptr, selectedSizeBuf.specialAsT<I>(), simple);
|
|
selectedSizeBuf.syncToPrimary(context, true);
|
|
res = *selectedSizeBuf.primaryAsT<I>();
|
|
}
|
|
|
|
if (output)
|
|
NDArray::registerSpecialUse({output}, {boxes, scores});
|
|
|
|
return res;
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
void nonMaxSuppression(nd4j::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output->dataType(), nonMaxSuppressionV2_,
|
|
(context, boxes, scales, maxSize, threshold, scoreThreshold, output),
|
|
FLOAT_TYPES, INDEXING_TYPES);
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
Nd4jLong nonMaxSuppressionGeneric(nd4j::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output ? output->dataType():DataType::INT32, return nonMaxSuppressionGeneric_,
|
|
(context, boxes, scales, maxSize, threshold, scoreThreshold, output, true),
|
|
FLOAT_TYPES, INDEXING_TYPES);
|
|
return boxes->sizeAt(0);
|
|
}
|
|
|
|
Nd4jLong
|
|
nonMaxSuppressionV3(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scores, int maxSize,
|
|
double overlapThreshold, double scoreThreshold, NDArray* output) {
|
|
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output ? output->dataType():DataType::INT32, return nonMaxSuppressionGeneric_,
|
|
(context, boxes, scores, maxSize, overlapThreshold, scoreThreshold, output, false),
|
|
FLOAT_TYPES, INDEXING_TYPES);
|
|
return boxes->sizeAt(0);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|