275 lines
13 KiB
Plaintext
275 lines
13 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/dropout.h>
|
|
#include <NativeOps.h>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <cuda_exception.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void dropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong* outputShape, double probVal, int inLen, nd4j::graph::RandomGenerator* nodeRng) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
T const* input = reinterpret_cast<T const*>(inputBuf);
|
|
T* output = reinterpret_cast<T*>(outputBuf);
|
|
|
|
// trivial idea: loop through all elements, get independent probability for each element to be nullified
|
|
for (Nd4jLong e = 0; e < inLen; ++e) {
|
|
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
|
|
|
|
// if probability is ok - we're saving scaled value
|
|
if (double(val) < probVal)
|
|
output[shape::getIndexOffset(e, outputShape)] = T(input[shape::getIndexOffset(e, inputShape)] / probVal);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void dropoutSimple(nd4j::LaunchContext* context, NDArray const* input, NDArray* output, double probValue, int seed) {
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed);
|
|
int inLen = input->lengthOf();
|
|
nd4j::graph::RandomGenerator* dRandom;
|
|
auto stream = context->getCudaStream();
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
auto err = cudaMalloc(&dRandom, sizeof(nd4j::graph::RandomGenerator));
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot allocate device memory for random generator.", err);
|
|
}
|
|
err = cudaMemcpy(dRandom, &nodeRng, sizeof(nd4j::graph::RandomGenerator), cudaMemcpyHostToDevice);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot set up device memory for random generator.", err);
|
|
}
|
|
|
|
dropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, inLen, dRandom);
|
|
err = cudaFree(dRandom);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot deallocate device memory for random generator.", err);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
template <typename T>
|
|
int _dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
|
|
if (reduceShape == nullptr){
|
|
dropoutSimple<T>(context.launchContext(), input, output, probValue, seed);
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
|
|
|
|
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
|
|
reduceShape->syncToHost(); // to ensure that follows are actual
|
|
bool fit = true;
|
|
|
|
for( int i = 0; i < dims.size(); i++ ) {
|
|
if (fit) {
|
|
dims[i] = reduceShape->e<Nd4jLong>(i);
|
|
for (int e = 0; e < input->rankOf(); ++e)
|
|
if (fit)
|
|
if (input->sizeAt(e) % dims[i]) {
|
|
fit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check dims to fit input
|
|
REQUIRE_TRUE(fit, 0, "dropout: Noise shape should fit to input rank.");
|
|
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
|
|
chunk->assign(1.f);
|
|
|
|
dropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), probValue, seed);
|
|
// broadcast chunk to full matrix
|
|
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
|
|
dropOutMultiplier->assign(1.f);
|
|
|
|
*dropOutMultiplier += *chunk;
|
|
|
|
// FIXME: we could do this in one step, aren't we?
|
|
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
int dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
auto xType = input->dataType();
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, return _dropOutFunctor, (context, input, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
/////////////////////////////////// backrpopagations ///////////////////////////////////////////////
|
|
template <typename T>
|
|
static __global__ void dropoutBPKernel(void* outputBuf, Nd4jLong* outputShape, void* gradOutBuf, Nd4jLong* gradOutShape, double probValue) {
|
|
__shared__ T* output;
|
|
__shared__ T* input;
|
|
__shared__ int len;
|
|
|
|
if (threadIdx.x == 0) {
|
|
len = shape::length(outputShape);
|
|
output = reinterpret_cast<T*>(outputBuf);
|
|
input = reinterpret_cast<T*>(gradOutBuf);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
for (int e = tid; e < len; e += step) {
|
|
const auto zOffset = shape::getIndexOffset(e, outputShape);
|
|
|
|
// if probability was non-zero on FF step, we'll scale grads back
|
|
if (output[zOffset] != T(0.))
|
|
output[zOffset] = T(input[shape::getIndexOffset(e, gradOutShape)] / probValue);
|
|
|
|
}
|
|
}
|
|
template <typename T>
|
|
static int dropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
// we're making additional FF run to see how probabilities played out with given seeds
|
|
int res = dropOutFunctor(context, input, output, reduceShape, seed, probValue);
|
|
auto stream = context.launchContext()->getCudaStream();
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, gradOut});
|
|
|
|
if (ND4J_STATUS_OK == res)
|
|
dropoutBPKernel<T><<<128, 256, 1024, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), probValue);
|
|
|
|
NDArray::registerSpecialUse({output}, {input, gradOut});
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
static __global__ void alphaDropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong* outputShape, double probValue, double alpha, double alpha1, double beta, int inLen, nd4j::graph::RandomGenerator* nodeRng) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
T const* input = reinterpret_cast<T const*>(inputBuf);
|
|
T* output = reinterpret_cast<T*>(outputBuf);
|
|
|
|
for (auto e = tid; e < inLen; e += step) {
|
|
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
|
|
T xVal = input[shape::getIndexOffset(e, inputShape)];
|
|
output[shape::getIndexOffset(e, outputShape)] = (val >= T(probValue) ? T(alpha * beta + alpha1) : T(alpha * (double)xVal + alpha1));
|
|
}
|
|
}
|
|
template <typename T>
|
|
static void alphaDropoutSimple(nd4j::LaunchContext* context, NDArray const* input, NDArray* output, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed), *dRandom;
|
|
auto stream = context->getCudaStream();
|
|
auto err = cudaMalloc(&dRandom, sizeof(nd4j::graph::RandomGenerator));
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot allocate device memory for random generator.", err);
|
|
}
|
|
err = cudaMemcpy(dRandom, &nodeRng, sizeof(nd4j::graph::RandomGenerator), cudaMemcpyHostToDevice);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot set up device memory for random generator.", err);
|
|
}
|
|
|
|
alphaDropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, alpha, alpha1, beta, output->lengthOf(), dRandom);
|
|
|
|
err = cudaFree(dRandom);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot deallocate device memory for random generator.", err);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
template <typename T>
|
|
static int alphaDropOutFunctor_(graph::Context& context, NDArray* input, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
if (reduceShape == nullptr){
|
|
alphaDropoutSimple<T>(context.launchContext(), input, output, seed, probValue, alpha, alpha1, beta);
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
|
|
|
|
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
|
|
reduceShape->syncToHost(); // to ensure that follows are actual
|
|
bool fit = true;
|
|
|
|
for( int i = 0; i < dims.size(); i++ ) {
|
|
if (fit) {
|
|
dims[i] = reduceShape->e<Nd4jLong>(i);
|
|
for (int e = 0; e < input->rankOf(); ++e)
|
|
if (fit)
|
|
if (input->sizeAt(e) % dims[i]) {
|
|
fit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check dims to fit input
|
|
REQUIRE_TRUE(fit, 0, "alpha_dropout: Noise shape should fit to input rank.");
|
|
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
|
|
chunk->assign(1.f);
|
|
|
|
alphaDropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), seed, probValue, alpha, alpha1, beta);
|
|
|
|
// broadcast chunk to full matrix
|
|
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
|
|
dropOutMultiplier->assign(1.f);
|
|
|
|
*dropOutMultiplier += *chunk;
|
|
|
|
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
|
|
}
|
|
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
template <typename T>
|
|
int alphaDropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
int res = alphaDropOutFunctor(context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta);
|
|
if (res == ND4J_STATUS_OK) {
|
|
// FIXME: can we make it single-loop?
|
|
(*output) *= alpha;
|
|
(*output) *= (*gradOut); //->applyPairwiseTransform<transform::Multiply>(gradOut, output, nullptr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int dropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return dropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
}
|
|
|
|
int alphaDropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctor_, (context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
|
|
int alphaDropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |