112 lines
4.7 KiB
Plaintext
112 lines
4.7 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/addBias.h>
|
|
#include <PointersManager.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
__global__ static void addBiasCuda( const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const bool isNCHW) {
|
|
|
|
// bias [oC]
|
|
|
|
// if(input_rank == 4)
|
|
// input and output have same shapes: [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
|
|
// if(input_rank == 5)
|
|
// input and output have same shapes: [bS, oD, oH, oW, oC] (NHWC) or [bS, oD, oC, oH, oW] (NCHW)
|
|
|
|
const X* x = reinterpret_cast<const X*>(vx);
|
|
const Y* y = reinterpret_cast<const Y*>(vy);
|
|
X* z = reinterpret_cast<X*>(vz);
|
|
|
|
__shared__ int rank, channelPosition, posOfNonUnityDim;
|
|
__shared__ Nd4jLong *sharedMem, len;
|
|
__shared__ bool xzSameOffsets, xzAreSame;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
rank = shape::rank(xShapeInfo); // xRank == zRank
|
|
xzSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo);
|
|
len = shape::length(xShapeInfo);
|
|
channelPosition = isNCHW ? 1 : rank - 1; // second or last
|
|
xzAreSame = x == z;
|
|
|
|
shape::isCommonVector(yShapeInfo, posOfNonUnityDim);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * rank;
|
|
|
|
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < len; i += blockDim.x * gridDim.x) {
|
|
|
|
shape::index2coords(i, xShapeInfo, coords);
|
|
|
|
const auto xOffsets = shape::getOffset(xShapeInfo, coords);
|
|
const auto zOffsets = xzSameOffsets ? xOffsets : shape::getOffset(zShapeInfo, coords);
|
|
const auto yOffsets = coords[channelPosition] * shape::stride(yShapeInfo)[posOfNonUnityDim];
|
|
|
|
if(xzAreSame)
|
|
z[zOffsets] += static_cast<X>(y[yOffsets]);
|
|
else
|
|
z[zOffsets] = x[xOffsets] + static_cast<X>(y[yOffsets]);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
static void addBiasCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const bool isNCHW) {
|
|
|
|
addBiasCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, isNCHW);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void addBias(nd4j::graph::Context& block, const NDArray& input, const NDArray& bias, NDArray& output, const bool isNCHW) {
|
|
|
|
PointersManager manager(block.launchContext(), "addBias");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS/2;
|
|
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&input, &bias});
|
|
BUILD_DOUBLE_SELECTOR(input.dataType(), bias.dataType(), addBiasCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), bias.getSpecialBuffer(), bias.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), isNCHW), FLOAT_TYPES, FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({&output}, {&input, &bias});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
}
|
|
}
|
|
} |