70 lines
4.8 KiB
C++
70 lines
4.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
#ifndef __H_LEGACY_HELPERS__
|
|
#define __H_LEGACY_HELPERS__
|
|
#include <NDArray.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
/*
|
|
FORCEINLINE void reluDerivative(NDArray* theFirst, NDArray const* theSecond);
|
|
FORCEINLINE void reluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void relu6Derivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void leakyReluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void eluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void seluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void cubeDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void reduceNorm1(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void sxeLossWithLogits(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void tanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void hardTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void rationalTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void rectifiedTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void softSignDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void softPlusDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void sigmoidDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
FORCEINLINE void hardSigmoidDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
*/
|
|
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond);
|
|
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void cubeDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void reduceNorm1(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void sigmCrossEntropy(nd4j::LaunchContext * context, NDArray* logits, NDArray* lablels, NDArray* theOutput);
|
|
void sigmCrossEntropyGrad(nd4j::LaunchContext * context, NDArray* logits, NDArray* lablels, NDArray* theOutput);
|
|
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void softSignDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void softPlusDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void sigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void hardSigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
|
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* axis, NDArray* output);
|
|
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output);
|
|
}
|
|
}
|
|
}
|
|
#endif
|