2019-06-06 15:21:15 +03:00

139 lines
5.2 KiB
Java

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.eval;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.datasets.iterator.ExistingDataSetIterator;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.util.Collections;
import static org.junit.Assert.assertEquals;
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
/**
* @author Alex Black
*/
public class RegressionEvalTest extends BaseDL4JTest {
@Test
public void testRegressionEvalMethods() {
//Basic sanity check
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.ZERO).list()
.layer(0, new OutputLayer.Builder().activation(Activation.TANH)
.lossFunction(LossFunctions.LossFunction.MSE).nIn(10).nOut(5).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
INDArray f = Nd4j.zeros(4, 10);
INDArray l = Nd4j.ones(4, 5);
DataSet ds = new DataSet(f, l);
DataSetIterator iter = new ExistingDataSetIterator(Collections.singletonList(ds));
RegressionEvaluation re = net.evaluateRegression(iter);
for (int i = 0; i < 5; i++) {
assertEquals(1.0, re.meanSquaredError(i), 1e-6);
assertEquals(1.0, re.meanAbsoluteError(i), 1e-6);
}
ComputationGraphConfiguration graphConf =
new NeuralNetConfiguration.Builder().weightInit(WeightInit.ZERO).graphBuilder()
.addInputs("in").addLayer("0", new OutputLayer.Builder()
.lossFunction(LossFunctions.LossFunction.MSE)
.activation(Activation.TANH).nIn(10).nOut(5).build(), "in")
.setOutputs("0").build();
ComputationGraph cg = new ComputationGraph(graphConf);
cg.init();
RegressionEvaluation re2 = cg.evaluateRegression(iter);
for (int i = 0; i < 5; i++) {
assertEquals(1.0, re2.meanSquaredError(i), 1e-6);
assertEquals(1.0, re2.meanAbsoluteError(i), 1e-6);
}
}
@Test
public void testRegressionEvalPerOutputMasking() {
INDArray l = Nd4j.create(new double[][] {{1, 2, 3}, {10, 20, 30}, {-5, -10, -20}});
INDArray predictions = Nd4j.zeros(l.shape());
INDArray mask = Nd4j.create(new double[][] {{0, 1, 1}, {1, 1, 0}, {0, 1, 0}});
RegressionEvaluation re = new RegressionEvaluation();
re.eval(l, predictions, mask);
double[] mse = new double[] {(10 * 10) / 1.0, (2 * 2 + 20 * 20 + 10 * 10) / 3, (3 * 3) / 1.0};
double[] mae = new double[] {10.0, (2 + 20 + 10) / 3.0, 3.0};
double[] rmse = new double[] {10.0, Math.sqrt((2 * 2 + 20 * 20 + 10 * 10) / 3.0), 3.0};
for (int i = 0; i < 3; i++) {
assertEquals(mse[i], re.meanSquaredError(i), 1e-6);
assertEquals(mae[i], re.meanAbsoluteError(i), 1e-6);
assertEquals(rmse[i], re.rootMeanSquaredError(i), 1e-6);
}
}
@Test
public void testRegressionEvalTimeSeriesSplit(){
INDArray out1 = Nd4j.rand(new int[]{3, 5, 20});
INDArray outSub1 = out1.get(all(), all(), interval(0,10));
INDArray outSub2 = out1.get(all(), all(), interval(10, 20));
INDArray label1 = Nd4j.rand(new int[]{3, 5, 20});
INDArray labelSub1 = label1.get(all(), all(), interval(0,10));
INDArray labelSub2 = label1.get(all(), all(), interval(10, 20));
RegressionEvaluation e1 = new RegressionEvaluation();
RegressionEvaluation e2 = new RegressionEvaluation();
e1.eval(label1, out1);
e2.eval(labelSub1, outSub1);
e2.eval(labelSub2, outSub2);
assertEquals(e1, e2);
}
}