cavis/libnd4j/include/ops/declarable/platform/mkldnn/conv3d.cpp

608 lines
37 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <system/platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
using namespace dnnl;
namespace sd {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////
static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
const NDArray *bias, NDArray *output,
const int kD, const int kH, const int kW,
const int sD, const int sH, const int sW,
const int pD, const int pH, const int pW,
const int dD, const int dH, const int dW,
const int paddingMode, const int isNCDHW) {
// weights [kD, kH, kW, iC, oC], we'll perform permutation since mkl support [oC, iC, kD, kH, kW]
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
// const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
dnnl::memory::dims strides = {sD, sH, sW};
dnnl::memory::dims padding = {pD, pH, pW};
// dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame };
dnnl::memory::dims padding_r = {(oD - 1) * sD - iD + kD - pD, (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW};
dnnl::memory::dims dilation = {dD-1, dH-1, dW-1};
auto xzFrmat = isNCDHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::oidhw;
dnnl::memory::dims xDims = {bS, iC, iD, iH, iW};
dnnl::memory::dims wDims = {oC, iC, kD, kH, kW};
dnnl::memory::dims zDims = {bS, oC, oD, oH, oW};
auto type = dnnl::memory::data_type::f32;
// memory descriptors for arrays
// input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
mkldnnUtils::setBlockStrides(input, 5, x_user_md);
// weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormat);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(4); // permute [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(0);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(1);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(2);
// bias
dnnl::memory::desc b_mkl_md;
if(bias != nullptr)
b_mkl_md = dnnl::memory::desc({oC}, type, dnnl::memory::format_tag::x);
// output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
mkldnnUtils::setBlockStrides(output, 5, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// operation primitive description
dnnl::convolution_forward::desc op_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, b_mkl_md, z_mkl_md, strides, dilation, padding, padding_r);
dnnl::convolution_forward::primitive_desc op_prim_desc(op_desc, engine);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, dnnl::memory> args;
dnnl::stream stream(engine);
// provide memory buffers and check whether reorder is required
// input
mkldnnUtils::loadDataToMklStream(input, engine, stream, args, x_user_md, op_prim_desc.src_desc(), DNNL_ARG_SRC);
// weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, args, w_user_md, op_prim_desc.weights_desc(), DNNL_ARG_WEIGHTS);
// bias
if(bias != nullptr) {
auto b_mkl_mem = dnnl::memory(b_mkl_md, engine, bias->getBuffer());
args[DNNL_ARG_BIAS] = b_mkl_mem;
}
// output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->getBuffer());
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations
dnnl::convolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary
if (zReorder)
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
stream.wait();
}
//////////////////////////////////////////////////////////////////////
static void conv3dBpMKLDNN(const NDArray *input, const NDArray *weights, const NDArray *bias, const NDArray *gradO,
NDArray *gradI, NDArray *gradW, NDArray *gradB,
const int kD, const int kH, const int kW,
const int sD, const int sH, const int sW,
const int pD, const int pH, const int pW,
const int dD, const int dH, const int dW,
const int paddingMode, const int isNCDHW) {
// weights/gradW [kD, kH, kW, iC, oC], we'll perform permutation since mkl support [oC, iC, kD, kH, kW]
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
// const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
dnnl::memory::dims strides = {sD, sH, sW};
dnnl::memory::dims padding = {pD, pH, pW};
// dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame };
dnnl::memory::dims padding_r = {(oD - 1) * sD - iD + kD - pD, (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW};
dnnl::memory::dims dilation = {dD-1, dH-1, dW-1};
auto xzFrmat = isNCDHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::oidhw;
dnnl::memory::dims xDims = {bS, iC, iD, iH, iW};
dnnl::memory::dims wDims = {oC, iC, kD, kH, kW};
dnnl::memory::dims zDims = {bS, oC, oD, oH, oW};
auto type = dnnl::memory::data_type::f32;
// memory descriptors for arrays
// input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
mkldnnUtils::setBlockStrides(input, 5, x_user_md);
// weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormat);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(4); // permute [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(0);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(1);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(2);
// gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
mkldnnUtils::setBlockStrides(gradO, 5, gradO_user_md);
// gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
mkldnnUtils::setBlockStrides(gradI, 5, gradI_user_md);
// gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, type, wFormat);
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(4); // permute [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(3);
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->strideAt(0);
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(1);
gradW_user_md.data.format_desc.blocking.strides[4] = gradW->strideAt(2);
// gradB
dnnl::memory::desc gradB_mkl_md;
if(gradB != nullptr)
gradB_mkl_md = dnnl::memory::desc({oC}, type, dnnl::memory::format_tag::x);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// forward primitive description
dnnl::convolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
dnnl::convolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
// backward data primitive description
dnnl::convolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::convolution_auto, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
dnnl::convolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc);
// backward weights primitive description
dnnl::convolution_backward_weights::desc op_weights_bp_desc(dnnl::algorithm::convolution_auto, x_mkl_md, gradW_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
dnnl::convolution_backward_weights::primitive_desc op_weights_bp_prim_desc(op_weights_bp_desc, engine, op_ff_prim_desc);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, dnnl::memory> args;
dnnl::stream stream(engine);
// provide memory buffers and check whether reorder is required
// input
mkldnnUtils::loadDataToMklStream(input, engine, stream, args, x_user_md, op_weights_bp_prim_desc.src_desc(), DNNL_ARG_SRC);
// weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, args, w_user_md, op_data_bp_prim_desc.weights_desc(), DNNL_ARG_WEIGHTS);
// gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, gradO->getBuffer());
const bool gradOReorderW = op_weights_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
const bool gradOReorderD = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
auto gradO_mkl_memW = gradOReorderW ? dnnl::memory(op_weights_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
auto gradO_mkl_memD = gradOReorderD ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
if (gradOReorderW)
dnnl::reorder(gradO_user_mem, gradO_mkl_memW).execute(stream, gradO_user_mem, gradO_mkl_memW);
if (gradOReorderD)
dnnl::reorder(gradO_user_mem, gradO_mkl_memD).execute(stream, gradO_user_mem, gradO_mkl_memD);
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer());
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->getBuffer());
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB
if(gradB != nullptr) {
auto gradB_mkl_mem = dnnl::memory(gradB_mkl_md, engine, gradB->getBuffer());
args[DNNL_ARG_DIFF_BIAS] = gradB_mkl_mem;
}
// run backward data calculations
dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args);
if(gradOReorderW || gradOReorderD)
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memW;
// run backward weights calculations
dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary
if (gradIReorder)
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem);
if (gradWReorder)
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem);
stream.wait();
// shape::printArray(z_mkl_mem.map_data<float>(),8);
}
/*
//////////////////////////////////////////////////////////////////////
static void conv3dMKLDNN(sd::graph::Context &block,
const NDArray *input, const NDArray *weights, const NDArray *bias,
NDArray *output,
const int kD, const int kH, const int kW, const int sD, const int sH, const int sW, int pD, int pH, int pW, const int dD, const int dH, const int dW,
const int paddingMode, const int isNCDHW) {
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
dnnl_memory_desc_t empty;
dnnl::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md( empty);
dnnl::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md( empty);
dnnl::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
mkldnnUtils::getMKLDNNMemoryDescConv3d(kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, paddingMode,
isNCDHW,
bS, iC, iD, iH, iW, oC, oD, oH, oW, input, nullptr, weights,
nullptr, bias, output,
&conv_src_md, nullptr, &conv_weights_md, nullptr,
&conv_bias_md, &conv_dst_md,
&user_src_md, nullptr, &user_weights_md, nullptr,
&user_bias_md, &user_dst_md,
conv_strides, conv_padding, conv_padding_r, conv_dilation);
auto conv_desc = bias != nullptr ? convolution_forward::desc(prop_kind::forward, algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
: convolution_forward::desc(prop_kind::forward, algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine);
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine);
auto user_src_memory = dnnl::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
auto user_weights_memory = dnnl::memory(user_weights_md, engine, const_cast<NDArray *>(weights)->buffer());
auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
auto conv_src_memory = user_src_memory;
if (conv_prim_desc.src_desc() != user_src_memory.get_desc()) {
conv_src_memory = dnnl::memory(conv_prim_desc.src_desc(), engine);
reorder(user_src_memory, conv_src_memory).execute(stream, user_src_memory, conv_src_memory);
}
auto conv_weights_memory = user_weights_memory;
if (conv_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
conv_weights_memory = dnnl::memory(conv_prim_desc.weights_desc(), engine);
reorder(user_weights_memory, conv_weights_memory).execute(stream, user_weights_memory, conv_weights_memory);
}
auto conv_dst_memory = user_dst_memory;
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
conv_dst_memory = dnnl::memory(conv_prim_desc.dst_desc(), engine);
}
if (bias != nullptr) {
auto conv_bias_memory = dnnl::memory(conv_prim_desc.bias_desc(), engine, bias->getBuffer());
convolution_forward(conv_prim_desc).execute(stream, {{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_BIAS, conv_bias_memory},
{DNNL_ARG_DST, conv_dst_memory}});
}
else {
convolution_forward(conv_prim_desc).execute(stream, {{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_DST, conv_dst_memory}});
}
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc())
reorder(conv_dst_memory, user_dst_memory).execute(stream, conv_dst_memory, user_dst_memory);
stream.wait();
}
//////////////////////////////////////////////////////////////////////
static void conv3dBpMKLDNN(sd::graph::Context &block,
const NDArray *input, const NDArray *weights, const NDArray *bias, const NDArray *gradO,
NDArray *gradI, NDArray *gradW, NDArray *gradB,
const int kD, const int kH, const int kW, const int sD, const int sH, const int sW, int pD, int pH, int pW, const int dD, const int dH, const int dW,
const int paddingMode, const int isNCDHW) {
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
dnnl_memory_desc_t empty;
dnnl::memory::desc conv_src_md(empty), conv_diff_src_md(empty), conv_weights_md(empty), conv_diff_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty);
dnnl::memory::desc user_src_md(empty), user_diff_src_md(empty), user_weights_md(empty), user_diff_weights_md(empty), user_bias_md(empty), user_dst_md(empty);
dnnl::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
mkldnnUtils::getMKLDNNMemoryDescConv3d(kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, paddingMode,
isNCDHW,
bS, iC, iD, iH, iW, oC, oD, oH, oW, input, gradI, weights,
gradW, gradB, gradO,
&conv_src_md, &conv_diff_src_md, &conv_weights_md,
&conv_diff_weights_md, &conv_bias_md, &conv_dst_md,
&user_src_md, &user_diff_src_md, &user_weights_md,
&user_diff_weights_md, &user_bias_md, &user_dst_md,
conv_strides, conv_padding, conv_padding_r, conv_dilation);
auto conv_desc = gradB != nullptr ? convolution_forward::desc(prop_kind::forward, algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
: convolution_forward::desc(prop_kind::forward, algorithm::convolution_auto, conv_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()));
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine);
if (gradW != nullptr) {
auto convW_desc = gradB != nullptr ? convolution_backward_weights::desc(algorithm::convolution_auto, conv_src_md, conv_diff_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
: convolution_backward_weights::desc(algorithm::convolution_auto, conv_src_md, conv_diff_weights_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
auto convW_prim_desc = convolution_backward_weights::primitive_desc(convW_desc, engine, conv_prim_desc);
auto userW_src_memory = dnnl::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
auto userW_weights_memory = dnnl::memory(user_diff_weights_md, engine, gradW->buffer());
auto userW_dst_memory = dnnl::memory(user_dst_md, engine, const_cast<NDArray *>(gradO)->buffer());
auto convW_src_memory = userW_src_memory;
if (convW_prim_desc.src_desc() != userW_src_memory.get_desc()) {
convW_src_memory = dnnl::memory(convW_prim_desc.src_desc(), engine);
reorder(userW_src_memory, convW_src_memory).execute(stream, userW_src_memory, convW_src_memory);
}
auto convW_weights_memory = userW_weights_memory;
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
convW_weights_memory = dnnl::memory(convW_prim_desc.diff_weights_desc(), engine);
}
auto convW_dst_memory = userW_dst_memory;
if (convW_prim_desc.diff_dst_desc() != userW_dst_memory.get_desc()) {
convW_dst_memory = dnnl::memory(convW_prim_desc.diff_dst_desc(), engine);
reorder(userW_dst_memory, convW_dst_memory).execute(stream, userW_dst_memory, convW_dst_memory);
}
if (gradB != nullptr) {
auto convW_bias_memory = dnnl::memory(convW_prim_desc.diff_bias_desc(), engine, gradB->buffer());
convolution_backward_weights(convW_prim_desc).execute(stream,
{{DNNL_ARG_SRC, convW_src_memory},
{DNNL_ARG_DIFF_DST, convW_dst_memory},
{DNNL_ARG_DIFF_WEIGHTS, convW_weights_memory},
{DNNL_ARG_DIFF_BIAS, convW_bias_memory}});
}
else {
convolution_backward_weights(convW_prim_desc).execute(stream,
{{DNNL_ARG_SRC, convW_src_memory},
{DNNL_ARG_DIFF_DST, convW_dst_memory},
{DNNL_ARG_DIFF_WEIGHTS, convW_weights_memory}});
}
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc())
reorder(convW_weights_memory, userW_weights_memory).execute(stream, convW_weights_memory, userW_weights_memory);
stream.wait();
}
if (gradI != nullptr) {
auto convI_desc = convolution_backward_data::desc(algorithm::convolution_auto, conv_diff_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);
auto convI_prim_desc = convolution_backward_data::primitive_desc(convI_desc, engine, conv_prim_desc);
auto userI_src_memory = dnnl::memory(user_diff_src_md, engine, gradI->buffer());
auto userI_weights_memory = dnnl::memory(user_weights_md, engine, const_cast<NDArray *>(weights)->buffer());
auto userI_dst_memory = dnnl::memory(user_dst_md, engine, const_cast<NDArray *>(gradO)->buffer());
auto convI_src_memory = userI_src_memory;
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc())
convI_src_memory = dnnl::memory(convI_prim_desc.diff_src_desc(), engine);
auto convI_weights_memory = userI_weights_memory;
if (convI_prim_desc.weights_desc() != userI_weights_memory.get_desc()) {
convI_weights_memory = dnnl::memory(convI_prim_desc.weights_desc(), engine);
reorder(userI_weights_memory, convI_weights_memory).execute(stream, userI_weights_memory, convI_weights_memory);
}
auto convI_dst_memory = userI_dst_memory;
if (convI_prim_desc.diff_dst_desc() != userI_dst_memory.get_desc()) {
convI_dst_memory = dnnl::memory(convI_prim_desc.diff_dst_desc(), engine);
reorder(userI_dst_memory, convI_dst_memory).execute(stream, userI_dst_memory, convI_dst_memory);
}
convolution_backward_data(convI_prim_desc).execute(stream,
{{DNNL_ARG_DIFF_DST, convI_dst_memory},
{DNNL_ARG_WEIGHTS, convI_weights_memory},
{DNNL_ARG_DIFF_SRC, convI_src_memory}});
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc())
reorder(convI_src_memory, userI_src_memory).execute(stream, convI_src_memory, userI_src_memory);
}
}
*/
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv3dnew, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D MKLDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D MKLDNN OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int paddingMode = INT_ARG(12); // 0-SAME, 1-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, iC, oC};
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV3D MKLDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
if (bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D MKLDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
if (paddingMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
conv3dMKLDNN(input, weights, bias, output, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, paddingMode, isNCDHW);
return Status::OK();
}
PLATFORM_CHECK(conv3dnew, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
return block.isUseMKLDNN() && sd::MKLDNNStream::isSupported({input, weights, bias, output});
}
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv3dnew_bp, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D_BP MKLDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D_BP MKLDNN OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CUSTOM CONV3D_BP MKLDNN OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf());
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
if(paddingMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
int trueoD, trueoH, trueoW; // true output depth/height/width
ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, paddingMode);
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx( {bS, oC, trueoD, trueoH, trueoW, 0, indIOioC, indIOioD, indIOioD + 1, indIOioD + 2});
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, iC, oC};
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
if (bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
conv3dBpMKLDNN(input, weights, bias, gradO, gradI, gradW, gradB, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, paddingMode, isNCDHW);
return Status::OK();
}
PLATFORM_CHECK(conv3dnew_bp, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
return block.isUseMKLDNN() &&
sd::MKLDNNStream::isSupported({input, weights, bias, gradO, gradI, gradW, gradB});
}
}
}
}