77 lines
3.0 KiB
C++
77 lines
3.0 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/nth_element.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
void nthElementFunctor_(NDArray* input, Nd4jLong n, NDArray* output, bool reverse) {
|
|
|
|
NDArray sortedVals(*input);
|
|
if (input->isVector()) {
|
|
//std::vector<float> data(input->lengthOf());
|
|
//memcpy(&data[0], input->getBuffer(), sizeof(T) * data.size());
|
|
//size_t l = 0;
|
|
//for (size_t l = 0; l < data.size(); ++l)
|
|
// data[l] = input->e<float>(l);
|
|
//auto nthPos = data.begin();
|
|
//nthPos += n;
|
|
//std::nth_element(data.begin(), nthPos, data.end());
|
|
SpecialMethods<T>::sortGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), reverse);
|
|
output->p(0, sortedVals.e<T>(n));
|
|
}
|
|
else { // rank greater than 1
|
|
std::vector<int> lastDims({input->rankOf() - 1});// = ShapeUtils::evalDimsToExclude(input->rankOf(), {input->rankOf() - 1});
|
|
|
|
auto pack = sd::ConstantTadHelper::getInstance()->tadForDimensions(sortedVals.shapeInfo(), lastDims);
|
|
|
|
SpecialMethods<T>::sortTadGeneric(sortedVals.buffer(), sortedVals.shapeInfo(), lastDims.data(), lastDims.size(), pack.primaryShapeInfo(), pack.primaryOffsets(), reverse);
|
|
|
|
ResultSet rows = sortedVals.allTensorsAlongDimension(lastDims);
|
|
Nd4jLong oL = output->lengthOf();
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
auto row = rows.at(e);
|
|
output->p(e, row->e<T>(n));
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, oL);
|
|
}
|
|
}
|
|
|
|
void nthElementFunctor(sd::LaunchContext *launchContext, NDArray* input, Nd4jLong n, NDArray* output, bool reverse) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), nthElementFunctor_, (input, n, output, reverse), LIBND4J_TYPES);
|
|
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void nthElementFunctor_, (NDArray* input, Nd4jLong n, NDArray* output, bool reverse), LIBND4J_TYPES);
|
|
|
|
}
|
|
}
|
|
}
|