161 lines
5.8 KiB
C++
161 lines
5.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 01.06.2018
|
|
//
|
|
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/helpers/axis.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(reduce_mean, 1, 1, false, 0, 0) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
auto dimensions = *block.getIArguments();
|
|
if (block.width() > 1) {
|
|
auto axesVector = INPUT_VARIABLE(1);
|
|
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
|
|
}
|
|
|
|
bool keepDims = false;
|
|
if (block.getBArguments()->size())
|
|
keepDims = B_ARG(0);
|
|
else if (block.getTArguments()->size())
|
|
keepDims = (bool)T_ARG(0);
|
|
|
|
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
|
|
|
for(const auto& item : dimensions)
|
|
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
|
|
|
|
input->reduceAlongDimension(reduce::Mean, *output, dimensions, keepDims);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(reduce_mean) {
|
|
|
|
auto dimensions = *block.getIArguments();
|
|
auto in = inputShape->at(0);
|
|
if (block.width() > 1) {
|
|
auto axesVector = INPUT_VARIABLE(1);
|
|
helpers::adjustAxis(shape::rank(in), axesVector, dimensions);
|
|
}
|
|
|
|
bool keepDims = false;
|
|
if (block.getBArguments()->size())
|
|
keepDims = B_ARG(0);
|
|
else if (block.getTArguments()->size())
|
|
keepDims = (bool)T_ARG(0);
|
|
|
|
REQUIRE_TRUE(dimensions.size() <= in[0], 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
|
|
|
for(const auto& item : dimensions)
|
|
REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item);
|
|
|
|
auto outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(in), dimensions, in, keepDims, false, block.getWorkspace());
|
|
|
|
return SHAPELIST(outShapeInfo);
|
|
}
|
|
|
|
DECLARE_TYPES(reduce_mean) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(reduce_mean_bp, 2, 1, false, 0, 0) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto gradO = INPUT_VARIABLE(1);
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0);
|
|
|
|
auto dimensions = *block.getIArguments();
|
|
if (block.width() > 2) {
|
|
auto axesVector = INPUT_VARIABLE(2);
|
|
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
|
|
}
|
|
|
|
bool keepDims = false;
|
|
if (block.getBArguments()->size())
|
|
keepDims = B_ARG(0);
|
|
else if (block.getTArguments()->size())
|
|
keepDims = (bool)T_ARG(0);
|
|
|
|
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
|
|
|
for(const auto& item : dimensions)
|
|
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
|
|
|
|
if(gradO->lengthOf() == 1) {
|
|
gradI->assign(gradO->e(0) / input->lengthOf());
|
|
}
|
|
else {
|
|
|
|
gradI->assign((gradO->lengthOf() + 0.) / input->lengthOf());
|
|
|
|
if(!keepDims) {
|
|
auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace());
|
|
*gradI *= gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims)); // for example could be something like [a,b] -> [1,a,1,b]
|
|
}
|
|
else
|
|
*gradI *= *gradO;
|
|
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(reduce_mean_bp) {
|
|
auto in = inputShape->at(0);
|
|
auto dimensions = *block.getIArguments();
|
|
auto rank = shape::rank(in);
|
|
|
|
if (block.width() > 2) {
|
|
auto axesVector = INPUT_VARIABLE(2);
|
|
helpers::adjustAxis(rank, axesVector, dimensions);
|
|
}
|
|
REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
|
|
|
for(const auto& item : dimensions)
|
|
REQUIRE_TRUE(item >= -rank || item < rank, 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , rank, rank, item);
|
|
|
|
Nd4jLong* gradIshapeInfo(nullptr);
|
|
COPY_SHAPE(inputShape->at(0), gradIshapeInfo);
|
|
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo));
|
|
}
|
|
|
|
|
|
DECLARE_TYPES(reduce_mean_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|