Go to file
Alexander Stoyakin 2e99bc2dee [WIP] Handling binary data in DL4J servlet (#135)
* Binary deser

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Binary mode for servlet

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Added test

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* -sRandom image generation copied from datavec

* -sRandom image generation copied from datavec

* Remove serialization constraints

* Fix:

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Removed unused code

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Resources usage

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Async inference

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Cleanup

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* -sTest corrected

* Cleanup

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Mutually eclusive serializers/deserializers

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Binary output supported

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* Binary out test

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* - types hardcoded
- increased payload size limit

Signed-off-by: raver119 <raver119@gmail.com>

* change types constant

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-23 17:00:55 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Various fixes (#141) 2019-08-21 23:47:24 +10:00
datavec [WIP] Remote inference (#96) 2019-08-14 12:11:09 +03:00
deeplearning4j [WIP] Handling binary data in DL4J servlet (#135) 2019-08-23 17:00:55 +03:00
docs Update docs for Android and CUDA/cuDNN 2019-08-23 17:21:38 +09:00
gym-java-client Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
jumpy Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
libnd4j - concat empty scalar fix 2019-08-23 13:16:50 +03:00
nd4j [WIP] Handling binary data in DL4J servlet (#135) 2019-08-23 17:00:55 +03:00
nd4s Added scala version (#157) 2019-08-23 15:43:22 +03:00
pydatavec Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pydl4j Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
rl4j Small build fixes (#127) 2019-08-17 14:13:31 +10:00
scalnet Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTING.md Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.1 (#8004) 2019-07-14 21:07:33 +03:00
change-scala-versions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
change-spark-versions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Upgrade Jersey to 2.29 (#139) 2019-08-21 18:34:49 +10:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/deeplearning4j/dl4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/deeplearning4j/dl4j-examples/tree/master/tutorials