* #8395 Keras import - support scaled identity weight init Signed-off-by: AlexDBlack <blacka101@gmail.com> * More Keras scaled weight init fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8352 Deprecate duplicate SamplingDataSetIterator class Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove /O2 optimization for faster CUDA build Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweak regression test precision for CUDA Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix edge cases for buffer creation Signed-off-by: AlexDBlack <blacka101@gmail.com> * Update MKLDNN validation tests to new helper enable/disable settings Signed-off-by: AlexDBlack <blacka101@gmail.com> * Delete debugging class Signed-off-by: AlexDBlack <blacka101@gmail.com> * MKLDNN test - add proper skip for CUDA backend Signed-off-by: AlexDBlack <blacka101@gmail.com> * Align WeightInitUtil with weight init classes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for SameDiff test layers weight init when using IWeightInit classes Signed-off-by: AlexDBlack <blacka101@gmail.com>
55 lines
1.8 KiB
Java
55 lines
1.8 KiB
Java
/*******************************************************************************
|
|
* Copyright (c) 2015-2019 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
package org.deeplearning4j.nn.weights;
|
|
|
|
import lombok.Data;
|
|
import lombok.EqualsAndHashCode;
|
|
import lombok.NoArgsConstructor;
|
|
import org.apache.commons.math3.util.FastMath;
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
import org.nd4j.linalg.api.ops.random.impl.TruncatedNormalDistribution;
|
|
import org.nd4j.linalg.factory.Nd4j;
|
|
|
|
/**
|
|
* Truncated aussian distribution with mean 0, variance 1.0/((fanIn + fanOut)/2)
|
|
*
|
|
* @author Adam Gibson
|
|
*/
|
|
@Data
|
|
@NoArgsConstructor
|
|
public class WeightInitVarScalingNormalFanAvg implements IWeightInit {
|
|
|
|
private Double scale;
|
|
|
|
public WeightInitVarScalingNormalFanAvg(Double scale){
|
|
this.scale = scale;
|
|
}
|
|
|
|
@Override
|
|
public INDArray init(double fanIn, double fanOut, long[] shape, char order, INDArray paramView) {
|
|
double std;
|
|
if(scale == null){
|
|
std = Math.sqrt(2.0 / (fanIn + fanOut));
|
|
} else {
|
|
std = Math.sqrt(2.0 * scale / (fanIn + fanOut));
|
|
}
|
|
|
|
Nd4j.exec(new TruncatedNormalDistribution(paramView, 0.0, std));
|
|
return paramView.reshape(order, shape);
|
|
}
|
|
}
|