cavis/libnd4j/include/ops/declarable/helpers/cpu/triangular_solve.cpp

164 lines
6.8 KiB
C++

/*******************************************************************************
* Copyright (c) 2020 Konduit, K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <system/op_boilerplate.h>
#include <array/NDArray.h>
#include <execution/Threads.h>
#include "../triangular_solve.h"
namespace sd {
namespace ops {
namespace helpers {
/*
* lower triangular process for system of linear equations
* x_1 = b_1/a_1,1
* x_2 = (b_2 - a_2,1 * x_1) / a_2,2
* x_3 = (b_3 - a_3,1 * x_1 - a_3,2 * x_2) / a_3,3
* ...
* x_M = (b_M - a_M,1 * x_1 - ... a_M,M-1 * x_M-1)/ a_M,M
*
* output == x
* a == leftInput
* b == rightInput
*
* */
template <typename T>
static void lowerTriangularSolve(sd::LaunchContext * context, NDArray const * leftInput, NDArray const* rightInput, bool const unitsOnDiag, NDArray* output) {
auto rows = leftInput->rows();
auto cols = rightInput->columns();
//output->r<T>(0,0) = rightInput->t<T>(0,0) / leftInput->t<T>(0,0);
for (Nd4jLong r = 0; r < rows; r++) {
for (Nd4jLong j = 0; j < cols; j++) {
auto sum = rightInput->t<T>(r, j);
for (Nd4jLong c = 0; c < r; c++) {
sum -= leftInput->t<T>(r, c) * output->t<T>(c, j);
}
output->r<T>(r, j) = unitsOnDiag?sum: sum / leftInput->t<T>(r, r);
}
}
}
/*
* upper triangular process for system of linear equations
* x_M = b_M/a_M,M
* x_M-1 = (b_M-1 - a_M-1,M-2 * x_M) / a_M-1,M-1
* x_M-2 = (b_M-2 - a_M-2,M-3 * x_M-2 - a_M-2,M-1 * x_M) / a_3,3
* ...
* x_1 = (b_1 - a_1,2 * x_2 - ... a_1,M * x_M)/ a_1,1
*
* output == x
* a == leftInput
* b == rightInput
*
* */
template <typename T>
static void upperTriangularSolve(sd::LaunchContext* context, NDArray const* leftInput, NDArray const* rightInput, bool const unitsOnDiag, NDArray* output) {
auto rows = leftInput->rows();
auto cols = rightInput->columns();
for (Nd4jLong r = rows; r > 0; r--) {
for (Nd4jLong j = 0; j < cols; j++) {
auto sum = rightInput->t<T>(r - 1, j);
for (Nd4jLong c = r; c < rows; c++) {
sum -= leftInput->t<T>(r - 1, c) * output->t<T>(c, j);
}
output->r<T>(r - 1, j) = unitsOnDiag? sum : sum / leftInput->t<T>(r - 1, r - 1);
}
}
}
/// triangularSolve2D - 2D implementation of triangularSolveFunctor
/// \tparam T - type of NDArray output
/// \param context - launch context pointer
/// \param leftInput - T matrix of equation Tx = b
/// \param rightInput - b vector of equation Tx = b
/// \param lower - lower or upper triangular matrix
/// \param unitsOnDiag - solve for case when only units (1.0) on diagonal is assumed
/// \param output - output vector (x on equation Tx = b)
///
template <typename T>
void triangularSolve2D(sd::LaunchContext* context, NDArray const& leftInput, NDArray const& rightInput, bool const lower, bool const unitsOnDiag, NDArray& output) {
if (lower) {
lowerTriangularSolve<T>(context, &leftInput, &rightInput, unitsOnDiag, &output);
}
else {
upperTriangularSolve<T>(context, &leftInput, &rightInput, unitsOnDiag, &output);
}
}
BUILD_SINGLE_TEMPLATE(template void triangularSolve2D, (sd::LaunchContext* context, NDArray const& leftInput, NDArray const& rightInput, bool const lower, bool const unitsOnDiag, NDArray& output), FLOAT_TYPES);
template <typename T>
static int triangularSolveFunctor_(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) {
auto leftPart = leftInput->allTensorsAlongDimension({-2, -1});
auto rightPart = rightInput->allTensorsAlongDimension({-2, -1});
auto outputPart = output->allTensorsAlongDimension({-2, -1});
auto batchLoop = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
if (lower) {
lowerTriangularSolve<T>(context, leftPart[i], rightPart[i], false, outputPart[i]);
} else {
upperTriangularSolve<T>(context, leftPart[i], rightPart[i], false, outputPart[i]);
}
}
};
samediff::Threads::parallel_tad(batchLoop, 0, leftPart.size(), 1);
return Status::OK();
}
template <typename T>
static void adjointTriangularMatrix_(sd::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) {
auto inputPart = input->allTensorsAlongDimension({-2, -1});
auto outputPart = output->allTensorsAlongDimension({-2, -1});
auto cols = input->sizeAt(-1);
auto rows = input->sizeAt(-2);
auto batchLoop = PRAGMA_THREADS_FOR {
for (auto batch = start; batch < stop; batch++) {
if (!lower) {
for (Nd4jLong r = 0; r < rows; r++) {
for (Nd4jLong c = 0; c <= r; c++) {
outputPart[batch]->r<T>(r, c) = inputPart[batch]->t<T>(c, r);
}
}
} else {
for (Nd4jLong r = 0; r < rows; r++) {
for (Nd4jLong c = r; c < cols; c++) {
outputPart[batch]->r<T>(r, c) = inputPart[batch]->t<T>(c, r);
}
}
}
}
};
samediff::Threads::parallel_tad(batchLoop, 0, inputPart.size(), 1);
}
int triangularSolveFunctor(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) {
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return triangularSolveFunctor_, (context, leftInput, rightInput, lower, adjoint, output), FLOAT_NATIVE);
}
void adjointMatrix(sd::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), adjointTriangularMatrix_, (context, input, lower, output), FLOAT_NATIVE);
}
}
}
}