90 lines
4.0 KiB
C++
90 lines
4.0 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 18.09.2018
|
|
//
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void upsampling3d_(const NDArray& input, NDArray& output, const int factorD, const int factorH, const int factorW, const bool isNCDHW) {
|
|
// input has shape [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC)
|
|
// output has shape [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC)
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
|
|
const uint dimID = isNCDHW ? 2 : 1;
|
|
const uint dimIC = isNCDHW ? 1 : 4;
|
|
|
|
const uint bS = input.sizeAt(0);
|
|
const uint iC = input.sizeAt(dimIC);
|
|
const uint oD = output.sizeAt(dimID);
|
|
const uint oH = output.sizeAt(dimID + 1);
|
|
const uint oW = output.sizeAt(dimID + 2);
|
|
|
|
const Nd4jLong xStride0 = input.stridesOf()[0];
|
|
const Nd4jLong xStride1 = input.stridesOf()[dimIC];
|
|
const Nd4jLong xStride2 = input.stridesOf()[dimID];
|
|
const Nd4jLong xStride3 = input.stridesOf()[dimID + 1];
|
|
const Nd4jLong xStride4 = input.stridesOf()[dimID + 2];
|
|
|
|
const Nd4jLong zStride0 = output.stridesOf()[0];
|
|
const Nd4jLong zStride1 = output.stridesOf()[dimIC];
|
|
const Nd4jLong zStride2 = output.stridesOf()[dimID];
|
|
const Nd4jLong zStride3 = output.stridesOf()[dimID + 1];
|
|
const Nd4jLong zStride4 = output.stridesOf()[dimID + 2];
|
|
|
|
// loop through output array
|
|
auto func = PRAGMA_THREADS_FOR_3D {
|
|
uint xCoord2, xCoord3, xCoord4;
|
|
|
|
for (uint b = start_x; b < stop_x; b += inc_x) {
|
|
for (uint c = start_y; c < stop_y; c += inc_y) {
|
|
for (uint d = start_z; d < stop_z; d += inc_z) {
|
|
for (uint h = 0; h < oH; ++h) {
|
|
for (uint w = 0; w < oW; ++w) {
|
|
|
|
xCoord2 = d / factorD;
|
|
xCoord3 = h / factorH;
|
|
xCoord4 = w / factorW;
|
|
|
|
z[b * zStride0 + c * zStride1 + d * zStride2 + h * zStride3 + w * zStride4] = x[
|
|
b * xStride0 + c * xStride1 + xCoord2 * xStride2 + xCoord3 * xStride3 +
|
|
xCoord4 * xStride4];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, bS, 1, 0, iC, 1, 0, oD, 1);
|
|
}
|
|
|
|
void ConvolutionUtils::upsampling3d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int factorD, const int factorH, const int factorW, const bool isNCDHW) {
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), upsampling3d_, (input, output, factorD, factorH, factorW, isNCDHW), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|