cavis/libnd4j/include/ops/declarable/generic/helpers/BroadcastHelper.h

145 lines
7.0 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#ifndef LIBND4J_BROADCAST_HELPER_H
#define LIBND4J_BROADCAST_HELPER_H
#include <array/NDArray.h>
#include <helpers/ShapeUtils.h>
#include <ops/BroadcastOpsTuple.h>
#include <ops/BroadcastBoolOpsTuple.h>
#include <array/NDArrayFactory.h>
namespace sd {
namespace ops {
class BroadcastHelper {
public:
static FORCEINLINE NDArray* broadcastApply(sd::BroadcastOpsTuple op, NDArray* x, NDArray* y, NDArray* z, ExtraArguments *extraArgs = nullptr) {
if(x->isEmpty() || y->isEmpty()) {
if(!z->isEmpty())
throw std::runtime_error("BroadcastHelper::broadcastApply: when some of input arrays (or both) is empty, output array must be empty as well !");
return z;
}
std::unique_ptr<NDArray> ptr;
if (!Environment::getInstance().isExperimentalBuild()) {
if (y->dataType() != x->dataType()) {
y = new NDArray(y->cast(x->dataType()));
std::unique_ptr<NDArray> ptr2(y);
ptr.swap(ptr2);
}
}
if (!x->isScalar() && !y->isScalar() && x->isSameShape(y)) {
x->applyPairwiseTransform(op.p, *y, *z);
} else if (!x->isScalar() && y->isScalar()) {
x->applyScalarArr(op.s, const_cast<const NDArray&>(*y), *z);
} else if (x->isScalar() && !y->isScalar()) {
if (z->isSameShape(y)) {
if (op.s == scalar::Add || op.s == scalar::Multiply ) {
y->applyScalarArr(op.s, *x, *z);
} else if (op.s == scalar::SquaredSubtract) {
y->applyScalarArr(scalar::SquaredReverseSubtract, *x, *z);
} else if (op.s == scalar::Subtract) {
y->applyScalarArr(scalar::ReverseSubtract, *x, *z);
} else if (op.s == scalar::Divide) {
y->applyScalarArr(scalar::ReverseDivide, *x, *z);
} else if (op.s == scalar::Pow) {
y->applyScalarArr(scalar::ReversePow, *x, *z);
} else if (op.s == scalar::ReverseSubtract) {
y->applyScalarArr(scalar::Subtract, *x, *z);
} else if (op.s == scalar::ReverseDivide) {
y->applyScalarArr(scalar::Divide, *x, *z);
} else if (op.s == scalar::MaxPairwise || op.s == scalar::MinPairwise || op.s == scalar::AMaxPairwise || op.s == scalar::AMinPairwise) {
y->applyScalarArr(op.s, *x, *z);
} else if (op.s == scalar::CopyPws) {
z->assign(y);
} else {
z->assign(x);
z->applyPairwiseTransform(op.p, *y, extraArgs);
}
return z;
} else {
auto v = y->getShapeAsVector();
auto tZ = NDArrayFactory::valueOf(v, y, y->ordering());
tZ->applyPairwiseTransform(op.p, *y, extraArgs);
return tZ;
}
} else if (x->isScalar() && y->isScalar()) { // x->isScalar() && y->isScalar()
x->applyScalarArr(op.s, const_cast<const NDArray&>(*y), *z);
} else if (ShapeUtils::areShapesBroadcastable(*x, *y)) {
x->applyTrueBroadcast(op, *y, *z, true, extraArgs);
return z;
} else {
auto sx = ShapeUtils::shapeAsString(x);
auto sy = ShapeUtils::shapeAsString(y);
nd4j_printf("Broadcast: shapes should be equal, or broadcastable. But got %s vs %s instead\n", sx.c_str(), sy.c_str());
return nullptr;
}
return z;
}
static FORCEINLINE NDArray* broadcastApply(sd::BroadcastBoolOpsTuple op, NDArray* x, NDArray* y, NDArray* z, ExtraArguments *extraArgs = nullptr) {
if(x->isEmpty() || y->isEmpty()) {
if(!z->isEmpty())
throw std::runtime_error("BroadcastHelper::broadcastApply: when some of input arrays (or both) is empty, output array must be empty as well !");
return z;
}
if (!x->isScalar() && !y->isScalar() && x->isSameShape(y)) {
x->applyPairwiseTransform(op.p, *y, *z);
} else if (ShapeUtils::areShapesBroadcastable(*x, *y)) {
x->applyTrueBroadcast(op, *y, *z, true, extraArgs);
return z;
} else if (!x->isScalar() && y->isScalar()) {
x->applyScalarArr(op.s, const_cast<const NDArray&>(*y), *z);
} else if (x->isScalar() && !y->isScalar()) {
if (z->isSameShape(y)) {
//z->assign(x);
x->applyPairwiseTransform(op.p, *y, *z, extraArgs);
return z;
} else {
auto v = y->getShapeAsVector();
auto tZ = NDArrayFactory::valueOf(v, y, y->ordering());
//tZ->applyPairwiseTransform(op.p, *y, extraArgs);
return tZ;
}
} else if (x->isScalar() && y->isScalar()) { // x->isScalar() && y->isScalar()
x->applyScalarArr(op.s, const_cast<const NDArray&>(*y), *z);
} else if (ShapeUtils::areShapesBroadcastable(*x, *y)) {
x->applyTrueBroadcast(op, *y, *z, true, extraArgs);
return z;
} else {
auto sx = ShapeUtils::shapeAsString(x);
auto sy = ShapeUtils::shapeAsString(y);
nd4j_printf("Broadcast: shapes should be equal, or broadcastable. But got %s vs %s instead\n", sx.c_str(), sy.c_str());
return nullptr;
}
return z;
}
};
}
}
#endif