Go to file
Ryan Nett 2a1431264f
Remove calculate output shape from java side (#151)
* remove some unneeded java-side output shape calculations

Signed-off-by: Ryan Nett <rnett@skymind.io>

* delete Broadcast

Signed-off-by: Ryan Nett <rnett@skymind.io>

* delete Linear and Module,

Signed-off-by: Ryan Nett <rnett@skymind.io>

* update Identity, HashCode, and NoOp

Signed-off-by: Ryan Nett <rnett@skymind.io>

* removed Cast java-side shape function, added tests and SDVariable.isEmpty

Signed-off-by: Ryan Nett <rnett@skymind.io>

* ignoring test w/ issues on master

Signed-off-by: Ryan Nett <rnett@skymind.io>

* noop needs more work, fixed BaseArithmeticBackprop and BaseDynamicTransform ops

merge in master for c++ build fix

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fix EqualTo

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fix other cond ops

Signed-off-by: Ryan Nett <rnett@skymind.io>

* "fake" ops calculateOutputShape() throws exception

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use c++ shape calc for Linspace

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fix exception message, move most to BaseCompatOp

Signed-off-by: Ryan Nett <rnett@skymind.io>

* remove SDVariable.isEmpty

Signed-off-by: Ryan Nett <rnett@skymind.io>

* remove commented out code

Signed-off-by: Ryan Nett <rnett@skymind.io>
2019-08-27 20:39:32 -07:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Various fixes (#141) 2019-08-21 23:47:24 +10:00
datavec [WIP] Remote inference (#96) 2019-08-14 12:11:09 +03:00
deeplearning4j [WIP] Updating failed tests to reflect code changes (#184) 2019-08-27 19:56:04 +03:00
docs Update docs for Android and CUDA/cuDNN 2019-08-23 17:21:38 +09:00
gym-java-client Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
jumpy Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
libnd4j [WIP] few more fixes (#182) 2019-08-27 21:00:38 +03:00
nd4j Remove calculate output shape from java side (#151) 2019-08-27 20:39:32 -07:00
nd4s Remove calculate output shape from java side (#151) 2019-08-27 20:39:32 -07:00
pydatavec Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pydl4j Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
rl4j Small build fixes (#127) 2019-08-17 14:13:31 +10:00
scalnet Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CONTRIBUTING.md Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.1 (#8004) 2019-07-14 21:07:33 +03:00
change-scala-versions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
change-spark-versions.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Upgrade Jersey to 2.29 (#139) 2019-08-21 18:34:49 +10:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/deeplearning4j/dl4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/deeplearning4j/dl4j-examples/tree/master/tutorials