cavis/libnd4j
raver119 29e8e09db6
String changes (#3)
* initial commit

* additional data types & tensor type

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* missing include

* sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests files

Signed-off-by: raver119 <raver119@gmail.com>

* draft

Signed-off-by: raver119 <raver119@gmail.com>

* numeric sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* comment

Signed-off-by: raver119 <raver119@gmail.com>

* string sparse_to_dense version

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer expand

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for CUDA build

Signed-off-by: raver119 <raver119@gmail.com>

* shape fn for string_split

Signed-off-by: raver119 <raver119@gmail.com>

* one more comment

Signed-off-by: raver119 <raver119@gmail.com>

* string_split indices

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* test passes

Signed-off-by: raver119 <raver119@gmail.com>

* few rearrangements for databuffer implementations

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer: move inline methods to common implementations

Signed-off-by: raver119 <raver119@gmail.com>

* add native DataBuffer to Nd4j presets

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer creation

Signed-off-by: raver119 <raver119@gmail.com>

* use DataBuffer for allocation

Signed-off-by: raver119 <raver119@gmail.com>

* cpu databuffer as deallocatable

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer setters for bufers

Signed-off-by: raver119 <raver119@gmail.com>

* couple of wrappers

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffers being passed around

Signed-off-by: raver119 <raver119@gmail.com>

* Bunch of ByteBuffer-related signatures gone

Signed-off-by: raver119 <raver119@gmail.com>

* - few more Nd4j signatures removed
- minor fix for bfloat16

Signed-off-by: raver119 <raver119@gmail.com>

* nullptr pointer is still a pointer, but 0 as address :)

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* empty string array init

Signed-off-by: raver119 <raver119@gmail.com>

* one more test in cpp

Signed-off-by: raver119 <raver119@gmail.com>

* memcpy instead of databuffer swap

Signed-off-by: raver119 <raver119@gmail.com>

* special InteropDataBuffer for front-end languages

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for java

Signed-off-by: raver119 <raver119@gmail.com>

* pointer/indexer actualization

Signed-off-by: raver119 <raver119@gmail.com>

* CustomOp returns list for inputArumgents and outputArguments instead of array

Signed-off-by: raver119 <raver119@gmail.com>

* redundant call

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable op

Signed-off-by: raver119 <raver119@gmail.com>

* - view handling (but wrong one)
- print_variable java wrapper

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* - empty arrays handling

Signed-off-by: raver119 <raver119@gmail.com>

* - deserialization works now

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* one more fix

Signed-off-by: raver119 <raver119@gmail.com>

* initial cuda commit

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable message validation

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA views

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA special buffer size

Signed-off-by: raver119 <raver119@gmail.com>

* minor update to match master changes

Signed-off-by: raver119 <raver119@gmail.com>

* - consider arrays always actual on device for CUDA
- additional PrintVariable constructor
- CudaUtf8Buffer now allocates host buffer by default

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - print_variable now allows print from device

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer data type fix

Signed-off-by: raver119 <raver119@gmail.com>

* ...

Signed-off-by: raver119 <raver119@gmail.com>

* disable some debug messages

Signed-off-by: raver119 <raver119@gmail.com>

* master pulled in

Signed-off-by: raver119 <raver119@gmail.com>

* couple of new methods for DataBuffer interop

Signed-off-by: raver119 <raver119@gmail.com>

* java side

Signed-off-by: raver119 <raver119@gmail.com>

* offsetted constructor

Signed-off-by: raver119 <raver119@gmail.com>

* new CUDA deallocator

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 2

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 3

Signed-off-by: raver119 <raver119@gmail.com>

* - few new tests
- few new methods for DataBuffer management

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests + few more tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests pass

Signed-off-by: raver119 <raver119@gmail.com>

* now we pass DataBuffer to legacy ops too

Signed-off-by: raver119 <raver119@gmail.com>

* Native DataBuffer for legacy ops, Java side

Signed-off-by: raver119 <raver119@gmail.com>

* CPU java side update

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA java side update

Signed-off-by: raver119 <raver119@gmail.com>

* no more prepare/register action on java side

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray::prepare/register use now accepts vectors

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer now has few more convenience methods

Signed-off-by: raver119 <raver119@gmail.com>

* java bindings update

Signed-off-by: raver119 <raver119@gmail.com>

* tick device in NativeOps

Signed-off-by: raver119 <raver119@gmail.com>

* Corrected usage of OpaqueBuffer for tests.

* Corrected usage of OpaqueBuffer for java tests.

* NativeOpsTests fixes.

* print_variable now returns scalar

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* compat_string_split fix for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA execScalar fix
- CUDA lazyAllocateHostPointer now checks java indexer/pointer instead of native pointer

Signed-off-by: raver119 <raver119@gmail.com>

* legacy ops DataBuffer migration prototype

Signed-off-by: raver119 <raver119@gmail.com>

* ignore device shapeinfo coming from java

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor transformAny fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor tweak for lazy host allocation

Signed-off-by: raver119 <raver119@gmail.com>

* - DataBuffer::memcpy method
- bitcast now uses memcpy

Signed-off-by: raver119 <raver119@gmail.com>

* - IndexReduce CUDA dimension buffer fix

Signed-off-by: raver119 <raver119@gmail.com>

* views for CPU and CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less spam

Signed-off-by: raver119 <raver119@gmail.com>

* optional memory init

Signed-off-by: raver119 <raver119@gmail.com>

* async memset

Signed-off-by: raver119 <raver119@gmail.com>

* - SummaryStats CUDA fix
- DataBuffer.sameUnderlyingData() impl
- execBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* - reduce3All fix
switch to CUDA 10 temporarily

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA version

Signed-off-by: raver119 <raver119@gmail.com>

* proper memory deallocator registration

Signed-off-by: raver119 <raver119@gmail.com>

* HOST_ONLY workspace allocation

Signed-off-by: raver119 <raver119@gmail.com>

* temp commit

Signed-off-by: raver119 <raver119@gmail.com>

* few conflicts resolved

Signed-off-by: raver119 <raver119@gmail.com>

* few minor fixes

Signed-off-by: raver119 <raver119@gmail.com>

* one more minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray permute should operate on JVM primitives

Signed-off-by: raver119 <raver119@gmail.com>

* - create InteropDataBuffer for shapes as well
- update pointers after view creation in Java

Signed-off-by: raver119 <raver119@gmail.com>

* - addressPointer temporary moved to C++

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: don't account offset twice

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: DataBuffer pointer constructor updated

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA NDArray.unsafeDuplication() simplified

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA minor workspace-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* CPU DataBuffer.reallocate()

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity op

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity java side

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA more tweaks for data locality

Signed-off-by: raver119 <raver119@gmail.com>

* - compat_string_split tweak
- CudaUtf8Buffer update

Signed-off-by: raver119 <raver119@gmail.com>

* INDArray.close() mechanic restored

Signed-off-by: raver119 <raver119@gmail.com>

* one more test fixed

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA DataBuffer.reallocate() updated
- cudaMemcpy (synchronous) restored

Signed-off-by: raver119 <raver119@gmail.com>

* one last fix

Signed-off-by: raver119 <raver119@gmail.com>

* bad import removed

Signed-off-by: raver119 <raver119@gmail.com>

* another small fix

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* fix bad databuffer size

Signed-off-by: raver119 <raver119@gmail.com>

* release primaryBuffer on replace

Signed-off-by: raver119 <raver119@gmail.com>

* higher timeout

Signed-off-by: raver119 <raver119@gmail.com>

* disable timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* dbCreateView now validates offset and length of a view

Signed-off-by: raver119 <raver119@gmail.com>

* additional validation for dbExpand

Signed-off-by: raver119 <raver119@gmail.com>

* restore timeout back again

Signed-off-by: raver119 <raver119@gmail.com>

* smaller distribution for rng test to prevent timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer::memcpy now copies to device all the time

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueDataBuffer now contains all required methods for interop

Signed-off-by: raver119 <raver119@gmail.com>

* some javadoc

Signed-off-by: raver119 <raver119@gmail.com>

* GC on failed allocations

Signed-off-by: raver119 <raver119@gmail.com>

* minoe memcpu tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more bitcast test

Signed-off-by: raver119 <raver119@gmail.com>

* - NDArray::deviceId() propagation
- special multi-threaded test for data locality checks

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* one ignored test

Signed-off-by: raver119 <raver119@gmail.com>

* skip host alloc for empty arrays

Signed-off-by: raver119 <raver119@gmail.com>

* ByteBuffer support is back

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer::memcpy minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* few minor prelu/bp tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* nullify-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU fixes (#157)

Signed-off-by: Alex Black <blacka101@gmail.com>

* Build fixed

* Fix tests

* one more ByteBuffer signature restored

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU weight init fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* Small PReLU fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* - INDArray.migrate() reactivated
- DataBuffer::setDeviceId(...) added
- InteropDataBuffer Z syncToDevice added for views

Signed-off-by: raver119 <raver119@gmail.com>

* missed file

Signed-off-by: raver119 <raver119@gmail.com>

* Small tweak

Signed-off-by: Alex Black <blacka101@gmail.com>

* cuda 10.2

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
Co-authored-by: Alex Black <blacka101@gmail.com>
Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
2020-01-04 13:27:50 +03:00
..
blas String changes (#3) 2020-01-04 13:27:50 +03:00
cmake Update CMake toolchains for more recent versions of Android NDK (#8502) 2019-12-05 12:46:01 +02:00
include String changes (#3) 2020-01-04 13:27:50 +03:00
minifier Create C wrappers for some of the C++ classes currently used by ND4J 2019-08-05 11:22:59 +10:00
msi Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
packages Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
profile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
server Shyrma concat (#24) 2019-11-03 12:37:19 +02:00
tests_cpu String changes (#3) 2020-01-04 13:27:50 +03:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
AddingNewOps.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
CMakeLists.txt [WIP] CUDA build (#109) 2019-12-14 14:38:17 +03:00
CMakeLists.txt.cpu_features.in Platform helpers (#8216) 2019-09-11 21:50:28 +03:00
CMakeLists.txt.in [WIP] CUDA build (#109) 2019-12-14 14:38:17 +03:00
CMakeLists.txt.mkldnn.in - MKL-DNN version upgrade to 1.1.x (#62) 2019-11-20 13:23:08 +03:00
CMakeSettings.json [WIP] HSV,RGB color model conversions (#125) 2019-12-17 09:42:09 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
RaspberryPi.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
UnderstandingGraph.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
assembly-cuda.xml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
assembly.xml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
buildnativeoperations.sh Update CMake toolchains for more recent versions of Android NDK (#8502) 2019-12-05 12:46:01 +02:00
cibuild.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
development.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
flatproto.txt Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
iOS.md Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
linuxOnPower.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
macOSx10 (CPU only).md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
pom.xml Various fixes (#143) 2020-01-04 13:45:07 +11:00
proto.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
setuposx.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
windows.md Lu wrapper and tests fixes (#144) 2019-12-30 15:06:12 +03:00

README.md

LibND4J

Native operations for nd4j. Build using cmake

Prerequisites

  • GCC 4.9+
  • CUDA 8.0 or 9.0 (if desired)
  • CMake 3.8 (as of Nov 2017, in near future will require 3.9)

Additional build arguments

There's few additional arguments for buildnativeoperations.sh script you could use:

 -a XXXXXXXX// shortcut for -march/-mtune, i.e. -a native
 -b release OR -b debug // enables/desables debug builds. release is considered by default
 -j XX // this argument defines how many threads will be used to binaries on your box. i.e. -j 8 
 -cc XX// CUDA-only argument, builds only binaries for target GPU architecture. use this for fast builds

You can find the compute capability for your card on the NVIDIA website here.

For example, a GTX 1080 has compute capability 6.1, for which you would use -cc 61 (note no decimal point).

OS Specific Requirements

Android

Download the NDK, extract it somewhere, and execute the following commands, replacing android-xxx with either android-arm or android-x86:

git clone https://github.com/deeplearning4j/libnd4j
git clone https://github.com/deeplearning4j/nd4j
export ANDROID_NDK=/path/to/android-ndk/
cd libnd4j
bash buildnativeoperations.sh -platform android-xxx
cd ../nd4j
mvn clean install -Djavacpp.platform=android-xxx -DskipTests -pl '!:nd4j-cuda-9.0,!:nd4j-cuda-9.0-platform,!:nd4j-tests'

OSX

Run ./setuposx.sh (Please ensure you have brew installed)

See macOSx10 CPU only.md

Linux

Depends on the distro - ask in the earlyadopters channel for specifics on distro

Ubuntu Linux 15.10

wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install cmake
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9
sudo apt-get install git
git clone https://github.com/deeplearning4j/libnd4j
cd libnd4j/
export LIBND4J_HOME=~/libnd4j/
sudo rm /usr/bin/gcc
sudo rm /usr/bin/g++
sudo ln -s /usr/bin/gcc-4.9 /usr/bin/gcc
sudo ln -s /usr/bin/g++-4.9 /usr/bin/g++
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH

Ubuntu Linux 16.04

sudo apt install cmake
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-361
export TRICK_NVCC=YES
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH

The standard development headers are needed.

CentOS 6

yum install centos-release-scl-rh epel-release
yum install devtoolset-3-toolchain maven30 cmake3 git
scl enable devtoolset-3 maven30 bash
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH

Windows

See Windows.md

Setup for All OS

  1. Set a LIBND4J_HOME as an environment variable to the libnd4j folder you've obtained from GIT

    • Note: this is required for building nd4j as well.
  2. Setup cpu followed by gpu, run the following on the command line:

    • For standard builds:

      ./buildnativeoperations.sh
      ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
      
    • For Debug builds:

      ./buildnativeoperations.sh blas -b debug
      ./buildnativeoperations.sh blas -c cuda -сс YOUR_DEVICE_ARCH -b debug
      
    • For release builds (default):

      ./buildnativeoperations.sh
      ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
      

OpenMP support

OpenMP 4.0+ should be used to compile libnd4j. However, this shouldn't be any trouble, since OpenMP 4 was released in 2015 and should be available on all major platforms.

Linking with MKL

We can link with MKL either at build time, or at runtime with binaries initially linked with another BLAS implementation such as OpenBLAS. In either case, simply add the path containing libmkl_rt.so (or mkl_rt.dll on Windows), say /path/to/intel64/lib/, to the LD_LIBRARY_PATH environment variable on Linux (or PATH on Windows), and build or run your Java application as usual. If you get an error message like undefined symbol: omp_get_num_procs, it probably means that libiomp5.so, libiomp5.dylib, or libiomp5md.dll is not present on your system. In that case though, it is still possible to use the GNU version of OpenMP by setting these environment variables on Linux, for example:

export MKL_THREADING_LAYER=GNU
export LD_PRELOAD=/usr/lib64/libgomp.so.1

##Troubleshooting MKL

Sometimes the above steps might not be all you need to do. Another additional step might be the need to add:

export LD_LIBRARY_PATH=/opt/intel/lib/intel64/:/opt/intel/mkl/lib/intel64

This ensures that mkl will be found first and liked to.

Packaging

If on Ubuntu (14.04 or above) or CentOS (6 or above), this repository is also set to create packages for your distribution. Let's assume you have built:

  • for the cpu, your command-line was ./buildnativeoperations.sh ...:
cd blasbuild/cpu
make package
  • for the gpu, your command-line was ./buildnativeoperations.sh -c cuda ...:
cd blasbuild/cuda
make package

Uploading package to Bintray

The package upload script is in packaging. The upload command for an rpm built for cpu is:

./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cpu/libnd4j-0.8.0.fc7.3.1611.x86_64.rpm https://github.com/deeplearning4j

The upload command for a deb package built for cuda is:

./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cuda/libnd4j-0.8.0.fc7.3.1611.x86_64.deb https://github.com/deeplearning4j

Running tests

Tests are written with gtest, run using cmake. Tests are currently under tests_cpu/

There are 2 directories for running tests:

1. libnd4j_tests: These are older legacy ops tests.
2. layers_tests: This covers the newer graph operations and ops associated with samediff.

For running the tests, we currently use cmake or CLion to run the tests.

To run tests using CUDA backend it's pretty much similar process:

1. ./buildnativeoperations.h -c cuda -cc <YOUR_ARCH> -b debug -t -j <NUMBER_OF_CORES>
2. ./blasbuild/cuda/tests_cpu/layers_tests/runtests (.exe on Windows)