* - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
160 lines
6.8 KiB
C++
160 lines
6.8 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Adam Gibson
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#include <ops/declarable/headers/boolean.h>
|
|
|
|
#if NOT_EXCLUDED(OP_where_np)
|
|
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(where_np, -1, 1, false, 0, 0) {
|
|
auto condition = INPUT_VARIABLE(0);
|
|
|
|
if (block.width() == 3) {
|
|
auto x = INPUT_VARIABLE(1);
|
|
auto y = INPUT_VARIABLE(2);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
int numMatches = 0;
|
|
// if cond matches x/y shape - we have per-element mask
|
|
if (condition->isSameShape(x)) {
|
|
// FIXME: for perf it might be better to issue memcpy here, and fill only mismatched values from either X or Y
|
|
if(y->isScalar()) {
|
|
if (y->isR()) {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
auto r = condition->e<bool>(e) ? y->e<double>(0)
|
|
: x->e<double>(e);
|
|
z->p(e, r);
|
|
}
|
|
} else {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
auto r = condition->e<bool>(e) ? y->e<Nd4jLong>(0)
|
|
: x->e<Nd4jLong>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (y->isR()) {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
if (condition->e<bool>(e)) {
|
|
auto r = y->e<double>(numMatches);
|
|
z->p(e, r);
|
|
numMatches++;
|
|
} else {
|
|
auto r = x->e<double>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
} else {
|
|
for (int e = 0; e < condition->lengthOf(); e++) {
|
|
if (condition->e<bool>(e)) {
|
|
auto r = y->e<Nd4jLong>(numMatches);
|
|
z->p(e, r);
|
|
numMatches++;
|
|
} else {
|
|
auto r = x->e<Nd4jLong>(e);
|
|
z->p(e, r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(condition->lengthOf() == x->sizeAt(0), 0, "Condition length should be equal to the dim0 of x/y to act as TAD-mask, but got %d instead", condition->lengthOf());
|
|
|
|
auto dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {0});
|
|
auto tadsX = x->allTensorsAlongDimension(dims);
|
|
auto tadsY = y->allTensorsAlongDimension(dims);
|
|
auto tadsZ = z->allTensorsAlongDimension(dims);
|
|
|
|
for (int e = 0; e < tadsX.size(); e++) {
|
|
if (!condition->e<bool>(e))
|
|
tadsZ.at(e)->assign(tadsY.at(e));
|
|
else
|
|
tadsZ.at(e)->assign(tadsX.at(e));
|
|
}
|
|
}
|
|
} else {
|
|
// in this case we return 2D matrix, which basically contains coordinates fo true
|
|
|
|
REQUIRE_TRUE(block.width() == 1, 0, "Where op takes either 1 or 3 operands, But got %d operands instead", block.width());
|
|
// if (output->isEmpty())
|
|
Nd4jLong width = condition->rankOf();
|
|
nd4j::ops::Where op;
|
|
std::unique_ptr<ResultSet> res(op.execute({condition}, {}, {}, {}));
|
|
REQUIRE_OK(res->status());
|
|
NDArray* whereTrue = res->at(0);
|
|
if (whereTrue->isEmpty())
|
|
return ND4J_STATUS_OK;
|
|
for (Nd4jLong outNext = 0; outNext < width; ++outNext) {
|
|
auto output = OUTPUT_VARIABLE(outNext);
|
|
for (Nd4jLong e = 0; e < output->lengthOf(); ++e) {
|
|
output->p<Nd4jLong>(e, whereTrue->e<Nd4jLong>(e, outNext));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(where_np) {
|
|
auto shapes = SHAPELIST();
|
|
Nd4jLong *newShape;
|
|
if (block.width() == 3) {
|
|
auto inShape = inputShape->at(1);
|
|
COPY_SHAPE(inShape, newShape);
|
|
|
|
shapes->push_back(CONSTANT(newShape));
|
|
} else {
|
|
auto condition = INPUT_VARIABLE(0);
|
|
|
|
Nd4jLong numOfTrue = 0LL; //condition->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
|
|
for (Nd4jLong i = 0; i < condition->lengthOf(); ++i)
|
|
if (condition->e<bool>(i)) numOfTrue++;
|
|
|
|
// output shape - a tuple of rank(inShape) 1D tensors with numOfTrue len
|
|
if (numOfTrue) {
|
|
for (Nd4jLong e = 0; e < condition->rankOf(); ++e) {
|
|
shapes->push_back(ConstantShapeHelper::getInstance()->vectorShapeInfo(numOfTrue, nd4j::DataType::INT64));
|
|
}
|
|
}
|
|
else {
|
|
shapes->push_back(ConstantShapeHelper::getInstance()->emptyShapeInfo(nd4j::DataType::INT64));
|
|
}
|
|
}
|
|
return shapes;
|
|
}
|
|
|
|
DECLARE_TYPES(where_np) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(0, nd4j::DataType::BOOL)
|
|
->setAllowedInputTypes(1, nd4j::DataType::ANY)
|
|
->setAllowedInputTypes(2, nd4j::DataType::ANY)
|
|
->setAllowedOutputTypes( {ALL_FLOATS, ALL_INTS});
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif |