398 lines
25 KiB
C++
398 lines
25 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119, created on 29/10/17.
|
|
// @author Yurii Shyrma, changed on 20.03.2018
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_sconv2d)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <memory>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
|
|
|
|
CUSTOM_OP_IMPL(sconv2d, 2, 1, false, 0, 9) {
|
|
|
|
NDArray *input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
NDArray *weightsDepth = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
NDArray *weightsPoint = nullptr; // [1, 1, iC*mC, oC] always
|
|
NDArray *bias = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr
|
|
|
|
NDArray *output = OUTPUT_VARIABLE(0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
|
|
|
|
if(block.width() == 3) {
|
|
if((INPUT_VARIABLE(2))->rankOf() == 4)
|
|
weightsPoint = INPUT_VARIABLE(2);
|
|
else
|
|
bias = INPUT_VARIABLE(2);
|
|
}
|
|
else if(block.width() == 4) {
|
|
weightsPoint = INPUT_VARIABLE(2);
|
|
bias = INPUT_VARIABLE(3);
|
|
}
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, " SCONV2D OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weightsDepth->rankOf() == 4, 0, " SCONV2D OP: rank of weightsDepth array must be equal to 4, but got %i instead !", weightsDepth->rankOf());
|
|
if(weightsPoint)
|
|
REQUIRE_TRUE(weightsPoint->rankOf() == 4, 0, " SCONV2D OP: rank of weightsPoint array must be equal to 4, but got %i instead !", weightsPoint->rankOf());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() == 1 || bias->rankOf() == 2, 0, " SCONV2D OP: rank of biases array must be equal to 1 or 2, but got %i instead !", bias->rankOf());;
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weightsDepth->sizeAt(indWmC); // channels multiplier
|
|
|
|
std::string expectedWeightsDShape = ShapeUtils::shapeAsString({kH, kW, iC, mC});
|
|
REQUIRE_TRUE(expectedWeightsDShape == ShapeUtils::shapeAsString(weightsDepth), 0, " SCONV2D OP: wrong shape of weightsDepth array, expected is %s, but got %s instead !", expectedWeightsDShape.c_str(), ShapeUtils::shapeAsString(weightsDepth).c_str());
|
|
if(weightsPoint) {
|
|
std::string expectedWeightsPShape = ShapeUtils::shapeAsString({1, 1, iC*mC, oC});
|
|
REQUIRE_TRUE(expectedWeightsPShape == ShapeUtils::shapeAsString(weightsPoint), 0, " SCONV2D OP: wrong shape of weightsPoint array, expected is %s, but got %s instead !", expectedWeightsPShape.c_str(), ShapeUtils::shapeAsString(weightsPoint).c_str());
|
|
}
|
|
if (bias)
|
|
REQUIRE_TRUE(oC == bias->lengthOf(), 0, " SCONV2D OP: length of bias array must be equal to outChannels, but got %i instead", bias->lengthOf());
|
|
|
|
if (iC == 1) {
|
|
nd4j_debug("SCONV2D OP: for input_channels = 1 this op is equivalent to standard conv2d\n","");
|
|
ConvolutionUtils::conv2d(block, input, weightsDepth, bias, output, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW);
|
|
return Status::OK();
|
|
}
|
|
|
|
ConvolutionUtils::sconv2d(block, input, weightsDepth, weightsPoint, bias, output, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_TYPES(sconv2d) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
|
|
DECLARE_SHAPE_FN(sconv2d) {
|
|
|
|
auto inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weightsDShapeInfo = inputShape->at(1); // [kH, kW, iC, mC] always
|
|
Nd4jLong* weightsPShapeInfo = nullptr; // [1, 1, iC*mC, oC] always
|
|
Nd4jLong* biasShapeInfo = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr
|
|
|
|
if(block.width() == 3)
|
|
if(inputShape->at(2)[0] == 4)
|
|
weightsPShapeInfo = inputShape->at(2);
|
|
else
|
|
biasShapeInfo = inputShape->at(2);
|
|
else if(block.width() == 4) {
|
|
weightsPShapeInfo = inputShape->at(2);
|
|
biasShapeInfo = inputShape->at(3);
|
|
}
|
|
|
|
const int rank = 4;
|
|
REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "SCONV2D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]);
|
|
REQUIRE_TRUE(weightsDShapeInfo[0] == rank, 0, "SCONV2D OP: rank of weightsDepth array must be equal to %i, but got %i instead !", rank, weightsDShapeInfo[0]);
|
|
if(weightsPShapeInfo)
|
|
REQUIRE_TRUE(weightsPShapeInfo[0] == rank, 0, "SCONV2D OP: rank of weightsPoint array must be equal to %i, but got %i instead !", rank, weightsPShapeInfo[0]);
|
|
if(biasShapeInfo)
|
|
REQUIRE_TRUE(biasShapeInfo[0] <= 2, 0, "SCONV2D OP: rank of biases array must be <= 2, but got %i instead !", biasShapeInfo[0]);;
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
int indIOioC, indIiH, indWmC(3);
|
|
if(!isNCHW) {
|
|
indIOioC = 3; indIiH = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiH = 2;
|
|
}
|
|
|
|
const int bS = inputShapeInfo[1]; // batch size
|
|
const int iH = inputShapeInfo[indIiH+1]; // input height
|
|
const int iW = inputShapeInfo[indIiH+2]; // input width
|
|
const int iC = inputShapeInfo[indIOioC+1]; // input channels
|
|
const int mC = weightsDShapeInfo[indWmC+1]; // channel multiplier
|
|
const int oC = weightsPShapeInfo ? weightsPShapeInfo[indWmC+1] : iC*mC; // output channels (oC or iC*mC)
|
|
|
|
std::string expectedWeightsDShape = ShapeUtils::shapeAsString({kH, kW, iC, mC});
|
|
REQUIRE_TRUE(expectedWeightsDShape == ShapeUtils::shapeAsString(weightsDShapeInfo), 0, "SCONV2D OP: wrong shape of depth weights array, expected is %s, but got %s instead !", expectedWeightsDShape.c_str(), ShapeUtils::shapeAsString(weightsDShapeInfo).c_str());
|
|
if(weightsPShapeInfo) {
|
|
std::string expectedWeightsPShape = ShapeUtils::shapeAsString({1, 1, iC*mC, oC});
|
|
REQUIRE_TRUE(expectedWeightsPShape == ShapeUtils::shapeAsString(weightsPShapeInfo), 0, "SCONV2D OP: wrong shape of point array, expected is %s, but got %s instead !", expectedWeightsPShape.c_str(), ShapeUtils::shapeAsString(weightsPShapeInfo).c_str());
|
|
}
|
|
if (biasShapeInfo)
|
|
REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "SCONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
|
|
|
|
int oH, oW; // output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
Nd4jLong* outputShapeInfo = nullptr;
|
|
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong);
|
|
|
|
outputShapeInfo[0] = 4;
|
|
outputShapeInfo[1] = bS;
|
|
|
|
if (isNCHW) {
|
|
outputShapeInfo[2] = oC;
|
|
outputShapeInfo[3] = oH;
|
|
outputShapeInfo[4] = oW;
|
|
} else {
|
|
outputShapeInfo[2] = oH;
|
|
outputShapeInfo[3] = oW;
|
|
outputShapeInfo[4] = oC;
|
|
}
|
|
|
|
ShapeUtils::updateStridesAndType(outputShapeInfo, weightsDShapeInfo, shape::order(inputShapeInfo));
|
|
|
|
return SHAPELIST(CONSTANT(outputShapeInfo));
|
|
}
|
|
|
|
DECLARE_TYPES(sconv2d_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(sconv2d_bp, 3, 2, false, 0, 9) {
|
|
|
|
NDArray *input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
NDArray *gradO = INPUT_VARIABLE(1); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
NDArray *weightsDepth = INPUT_VARIABLE(2); // [kH, kW, iC, mC] always
|
|
NDArray *weightsPoint = nullptr; // [1, 1, iC*mC, oC] always
|
|
NDArray *bias = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr
|
|
|
|
NDArray *gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
|
|
NDArray *gradWD = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
NDArray *gradWP = nullptr; // [1, 1, iC*mC, oC] always
|
|
NDArray *gradB = nullptr; // [oC]
|
|
|
|
if(block.width() == 4) {
|
|
if((INPUT_VARIABLE(3))->rankOf() == 4) {
|
|
weightsPoint = INPUT_VARIABLE(3);
|
|
gradWP = OUTPUT_VARIABLE(2);
|
|
}
|
|
else {
|
|
bias = INPUT_VARIABLE(3);
|
|
gradB = OUTPUT_VARIABLE(2);
|
|
}
|
|
}
|
|
else if(block.width() == 5) {
|
|
weightsPoint = INPUT_VARIABLE(3);
|
|
bias = INPUT_VARIABLE(4);
|
|
gradWP = OUTPUT_VARIABLE(2);
|
|
gradB = OUTPUT_VARIABLE(3);
|
|
}
|
|
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, " SCONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0, " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf());
|
|
REQUIRE_TRUE(weightsDepth->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsDepth array must be equal to 4 !, but got %i instead !", weightsDepth->rankOf());
|
|
if(weightsPoint) {
|
|
REQUIRE_TRUE(weightsPoint->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsPoint array must be equal to 4, but got %i instead !", weightsPoint->rankOf());
|
|
REQUIRE_TRUE(gradWP->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsPoint gradients array must be equal to 4, but got %i instead !", gradWP->rankOf());
|
|
}
|
|
if(bias) {
|
|
REQUIRE_TRUE(bias->rankOf() == 1 || bias->rankOf() == 2, 0, " SCONV2D_BP OP: rank of biases array must be equal to 1 or 2, but got %i instead !", bias->rankOf());
|
|
REQUIRE_TRUE(gradB->rankOf() == 1 || gradB->rankOf() == 2, 0, " SCONV2D_BP OP: rank of biases gradientsarray must be equal to 1 or 2, but got %i instead !", gradB->rankOf());
|
|
}
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weightsDepth->sizeAt(indWmC); // channels multiplier
|
|
|
|
std::string expectedWeightsDShape = ShapeUtils::shapeAsString({kH, kW, iC, mC});
|
|
REQUIRE_TRUE(expectedWeightsDShape == ShapeUtils::shapeAsString(weightsDepth), 0, " SCONV2D_BP OP: wrong shape of weightsDepth array, expected is %s, but got %s instead !", expectedWeightsDShape.c_str(), ShapeUtils::shapeAsString(weightsDepth).c_str());
|
|
REQUIRE_TRUE(expectedWeightsDShape == ShapeUtils::shapeAsString(gradWD), 0, " SCONV2D_BP OP: wrong shape of gradWD array, expected is %s, but got %s instead !", expectedWeightsDShape.c_str(), ShapeUtils::shapeAsString(gradWD).c_str());
|
|
if(weightsPoint) {
|
|
std::string expectedWeightsPShape = ShapeUtils::shapeAsString({1, 1, iC*mC, oC});
|
|
REQUIRE_TRUE(expectedWeightsPShape == ShapeUtils::shapeAsString(weightsPoint), 0, " SCONV2D_BP OP: wrong shape of weightsPoint array, expected is %s, but got %s instead !", expectedWeightsPShape.c_str(), ShapeUtils::shapeAsString(weightsPoint).c_str());
|
|
REQUIRE_TRUE(expectedWeightsPShape == ShapeUtils::shapeAsString(gradWP), 0, " SCONV2D_BP OP: wrong shape of gradWP array, expected is %s, but got %s instead !", expectedWeightsPShape.c_str(), ShapeUtils::shapeAsString(gradWP).c_str());
|
|
}
|
|
if (bias) {
|
|
REQUIRE_TRUE(oC == bias->lengthOf(), 0, " SCONV2D_BP OP: length of bias array must be equal to outChannels, but got %i instead", bias->lengthOf());
|
|
REQUIRE_TRUE(oC == gradB->lengthOf(), 0, " SCONV2D_BP OP: length of biases gradients array must be equal to outChannels, but got %i instead", gradB->lengthOf());
|
|
}
|
|
|
|
// if (iC == 1) {
|
|
// nd4j_debug(" SCONV2D_BP OP: for input_channels=1 this op is equivalent to standard conv2d_bp \n","");
|
|
// nd4j::ops::conv2d_bp op;
|
|
// return op.execute(&block);
|
|
// }
|
|
|
|
// ----- if weightsPoint is present, perform pointwise backprop first and calculate gradWP at this step ----- //
|
|
if (weightsPoint){
|
|
|
|
auto resultFFShape = isNCHW ? std::vector<Nd4jLong>({bS, mC*iC, oH, oW}) : std::vector<Nd4jLong>({bS, oH, oW, mC*iC});
|
|
auto resultFF = NDArrayFactory::create_(input->ordering(), resultFFShape, input->dataType(), block.launchContext());
|
|
ConvolutionUtils::sconv2d(block, input, weightsDepth, nullptr, nullptr, resultFF, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW);
|
|
|
|
auto gradIDepthShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC*mC,oH,oW, 0,indIOioC,indIiH,indIiH+1});
|
|
auto gradIDepth = NDArrayFactory::create_(resultFF->ordering(), gradIDepthShape, resultFF->dataType(), block.launchContext()); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
|
|
|
|
ConvolutionUtils::conv2dBP(block, resultFF, weightsPoint, bias, gradO, gradIDepth, gradWP, gradB, 1,1, 1,1, 0,0, 1,1, isSameMode, isNCHW); // in this case oH=iH and oW=iW
|
|
|
|
gradO = gradIDepth;
|
|
bias = gradB = nullptr; // if pointwise backprop was done then don't calculate gradB at depthwise_conv2d_bp step
|
|
|
|
delete resultFF;
|
|
}
|
|
|
|
// ----- apply depthwise_conv2d_bp ----- //
|
|
ConvolutionUtils::depthwiseConv2dBP(block, input, weightsDepth, bias, gradO, gradI, gradWD, gradB, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW);
|
|
|
|
if(weightsPoint)
|
|
delete gradO;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
DECLARE_SHAPE_FN(sconv2d_bp) {
|
|
|
|
auto inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto gradOShapeInfo = inputShape->at(1); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
auto weightsDShapeInfo = inputShape->at(2); // [kH, kW, iC, mC] always
|
|
Nd4jLong* weightsPShapeInfo = nullptr; // [1, 1, iC*mC, oC] always
|
|
Nd4jLong* biasShapeInfo = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr
|
|
|
|
if(block.width() == 4) {
|
|
if(inputShape->at(3)[0] == 4)
|
|
weightsPShapeInfo = inputShape->at(3);
|
|
else
|
|
biasShapeInfo = inputShape->at(3);
|
|
}
|
|
else if(block.width() == 5) {
|
|
weightsPShapeInfo = inputShape->at(3);
|
|
biasShapeInfo = inputShape->at(4);
|
|
}
|
|
|
|
const int rank = 4;
|
|
REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]);
|
|
REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo[0]);
|
|
REQUIRE_TRUE(weightsDShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of weightsDepth array must be equal to %i, but got %i instead !", rank, weightsDShapeInfo[0]);
|
|
if(weightsPShapeInfo)
|
|
REQUIRE_TRUE(weightsPShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of weightsPoint array must be equal to %i, but got %i instead !", rank, weightsPShapeInfo[0]);
|
|
if(biasShapeInfo)
|
|
REQUIRE_TRUE(biasShapeInfo[0] ==1 || biasShapeInfo[0] == 2, 0, " SCONV2D_BP OP: rank of biases array must be 1 or 2, but got %i instead !", biasShapeInfo[0]);;
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int indIOioC, indIiH, indWmC(3);
|
|
if(!isNCHW) {
|
|
indIOioC = 3; indIiH = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiH = 2;
|
|
}
|
|
|
|
const int bS = inputShapeInfo[1]; // batch size
|
|
const int iH = inputShapeInfo[indIiH+1]; // input height
|
|
const int iW = inputShapeInfo[indIiH+2]; // input width
|
|
const int iC = inputShapeInfo[indIOioC+1]; // input channels
|
|
const int mC = weightsDShapeInfo[indWmC+1]; // channel multiplier
|
|
const int oC = weightsPShapeInfo ? weightsPShapeInfo[indWmC+1] : iC*mC; // output channels (oC or iC*mC)
|
|
|
|
int trueoH, trueoW; // true output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
std::string expectedGradOShapeInfo = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indIiH,indIiH+1}));
|
|
REQUIRE_TRUE(expectedGradOShapeInfo == ShapeUtils::shapeAsString(gradOShapeInfo), 0, "SCONV2D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", expectedGradOShapeInfo.c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str());
|
|
std::string expectedWeightsDShape = ShapeUtils::shapeAsString({kH, kW, iC, mC});
|
|
REQUIRE_TRUE(expectedWeightsDShape == ShapeUtils::shapeAsString(weightsDShapeInfo), 0, "SCONV2D_BP OP: wrong shape of depth weights array, expected is %s, but got %s instead !", expectedWeightsDShape.c_str(), ShapeUtils::shapeAsString(weightsDShapeInfo).c_str());
|
|
if(weightsPShapeInfo) {
|
|
std::string expectedWeightsPShape = ShapeUtils::shapeAsString({1, 1, iC*mC, oC});
|
|
REQUIRE_TRUE(expectedWeightsPShape == ShapeUtils::shapeAsString(weightsPShapeInfo), 0, "SCONV2D_BP OP: wrong shape of point array, expected is %s, but got %s instead !", expectedWeightsPShape.c_str(), ShapeUtils::shapeAsString(weightsPShapeInfo).c_str());
|
|
}
|
|
if (biasShapeInfo)
|
|
REQUIRE_TRUE((biasShapeInfo[0] == 1 || biasShapeInfo[0] == 2) && oC == shape::length(biasShapeInfo), 0, "SCONV2D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
|
|
|
|
auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
auto gradWDshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsDShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
|
|
Nd4jLong* gradWPshapeInfo(nullptr), *gradBshapeInfo(nullptr);
|
|
|
|
if(weightsPShapeInfo && biasShapeInfo) {
|
|
gradWPshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsPShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradWPshapeInfo), CONSTANT(gradBshapeInfo));
|
|
}
|
|
|
|
if(weightsPShapeInfo && !biasShapeInfo) {
|
|
gradWPshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsPShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradWPshapeInfo));
|
|
}
|
|
|
|
if(!weightsPShapeInfo && biasShapeInfo) {
|
|
gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace());
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradBshapeInfo));
|
|
}
|
|
|
|
return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo));
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|