148 lines
5.0 KiB
Plaintext
148 lines
5.0 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include "testlayers.h"
|
|
#include <initializer_list>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <execution/Engine.h>
|
|
|
|
#ifdef HAVE_CUDNN
|
|
|
|
#include <ops/declarable/platform/cudnn/cudnnUtils.h>
|
|
|
|
#endif
|
|
|
|
using namespace sd;
|
|
|
|
class CuDnnTests : public testing::Test {
|
|
public:
|
|
|
|
};
|
|
|
|
static void printer(std::initializer_list<sd::ops::platforms::PlatformHelper*> helpers) {
|
|
|
|
for (auto v:helpers) {
|
|
nd4j_printf("Initialized [%s]\n", v->name().c_str());
|
|
}
|
|
}
|
|
|
|
|
|
TEST_F(CuDnnTests, helpers_includer) {
|
|
// we need this block, to make sure all helpers are still available within binary, and not optimized out by linker
|
|
#ifdef HAVE_CUDNN
|
|
sd::ops::platforms::PLATFORM_conv2d_ENGINE_CUDA conv2d;
|
|
sd::ops::platforms::PLATFORM_conv2d_bp_ENGINE_CUDA conv2d_bp;
|
|
sd::ops::platforms::PLATFORM_conv3dnew_ENGINE_CUDA conv3dnew;
|
|
sd::ops::platforms::PLATFORM_conv3dnew_bp_ENGINE_CUDA conv3dnew_bp;
|
|
sd::ops::platforms::PLATFORM_depthwise_conv2d_ENGINE_CUDA depthwise_conv2d;
|
|
sd::ops::platforms::PLATFORM_depthwise_conv2d_bp_ENGINE_CUDA depthwise_conv2d_bp;
|
|
sd::ops::platforms::PLATFORM_batchnorm_ENGINE_CUDA batchnorm;
|
|
sd::ops::platforms::PLATFORM_batchnorm_bp_ENGINE_CUDA batchnorm_bp;
|
|
sd::ops::platforms::PLATFORM_avgpool2d_ENGINE_CUDA avgpool2d;
|
|
sd::ops::platforms::PLATFORM_avgpool2d_bp_ENGINE_CUDA avgpool2d_bp;
|
|
sd::ops::platforms::PLATFORM_maxpool2d_ENGINE_CUDA maxpool2d;
|
|
sd::ops::platforms::PLATFORM_maxpool2d_bp_ENGINE_CUDA maxpool2d_bp;
|
|
sd::ops::platforms::PLATFORM_avgpool3dnew_ENGINE_CUDA avgpool3dnew;
|
|
sd::ops::platforms::PLATFORM_avgpool3dnew_bp_ENGINE_CUDA avgpool3dnew_bp;
|
|
sd::ops::platforms::PLATFORM_maxpool3dnew_ENGINE_CUDA maxpool3dnew;
|
|
sd::ops::platforms::PLATFORM_maxpool3dnew_bp_ENGINE_CUDA maxpool3dnew_bp;
|
|
|
|
|
|
|
|
printer({&conv2d});
|
|
printer({&conv2d_bp});
|
|
printer({&conv3dnew});
|
|
printer({&conv3dnew_bp});
|
|
printer({&depthwise_conv2d});
|
|
printer({&depthwise_conv2d_bp});
|
|
printer({&batchnorm});
|
|
printer({&batchnorm_bp});
|
|
printer({&avgpool2d});
|
|
printer({&avgpool2d_bp});
|
|
printer({&maxpool2d});
|
|
printer({&maxpool2d_bp});
|
|
printer({&avgpool3dnew});
|
|
printer({&avgpool3dnew_bp});
|
|
printer({&maxpool3dnew});
|
|
printer({&maxpool3dnew_bp});
|
|
#endif
|
|
}
|
|
|
|
|
|
TEST_F(CuDnnTests, mixed_helpers_test_1) {
|
|
#if defined(HAVE_CUDNN) && defined (HAVE_MKLDNN)
|
|
nd4j_printf("Mixed platforms test\n", "");
|
|
|
|
|
|
int bS=2, iH=4,iW=3, iC=4,oC=3, kH=3,kW=2, sH=1,sW=1, pH=0,pW=0, dH=1,dW=1;
|
|
int oH=2,oW=2;
|
|
int paddingMode = 0; // 1-SAME, 0-VALID;
|
|
int dataFormat = 0; // 1-NHWC, 0-NCHW
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {bS, iC, iH, iW});
|
|
auto weights = NDArrayFactory::create<float>('c', {oC, iC, kH, kW});
|
|
auto bias = NDArrayFactory::create<float>('c', {oC}, {1,2,3});
|
|
|
|
auto expOutput = NDArrayFactory::create<float>('c', {bS, oC, oH, oW}, {61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f, 61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f});
|
|
auto zCUDA = expOutput.like();
|
|
auto zMKL = expOutput.like();
|
|
|
|
input = 2.;
|
|
weights.linspace(0.1, 0.1);
|
|
weights.permutei({2,3,1,0});
|
|
|
|
input.syncToHost();
|
|
weights.syncToHost();
|
|
bias.syncToHost();
|
|
|
|
sd::ops::conv2d op;
|
|
|
|
// cuDNN part
|
|
Context cuda(1);
|
|
cuda.setTargetEngine(samediff::Engine::ENGINE_CUDA);
|
|
cuda.setInputArray(0, &input);
|
|
cuda.setInputArray(1, &weights);
|
|
cuda.setInputArray(2, &bias);
|
|
cuda.setOutputArray(0, &zCUDA);
|
|
cuda.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat});
|
|
auto statusCUDA = op.execute(&cuda);
|
|
|
|
ASSERT_EQ(Status::OK(), statusCUDA);
|
|
ASSERT_EQ(expOutput, zCUDA);
|
|
|
|
// MKL-DNN part
|
|
Context mkl(1);
|
|
mkl.setTargetEngine(samediff::Engine::ENGINE_CPU);
|
|
mkl.setInputArray(0, &input);
|
|
mkl.setInputArray(1, &weights);
|
|
mkl.setInputArray(2, &bias);
|
|
mkl.setOutputArray(0, &zMKL);
|
|
mkl.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat});
|
|
auto statusMKL = op.execute(&mkl);
|
|
|
|
zMKL.tickWriteHost();
|
|
|
|
ASSERT_EQ(Status::OK(), statusMKL);
|
|
ASSERT_EQ(expOutput, zMKL);
|
|
#endif
|
|
} |