cavis/libnd4j/include/ops/declarable/helpers/cuda/clip.cu

337 lines
15 KiB
Plaintext

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
// @author sgazeos@gmail.com
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void clipByNormCuda(const void* vClipNorm, const void* vNorm, const Nd4jLong* normShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int* dimensions, const int dimsLen, const bool useAverage) {
const T clipNorm = *reinterpret_cast<const T*>(vClipNorm);
const T* norm = reinterpret_cast<const T*>(vNorm);
T* z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, tadLen, totalThreads;
if (threadIdx.x == 0) {
zLen = shape::length(zShapeInfo);
tadLen = zLen / shape::length(normShapeInfo);
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
int zCoords[MAX_RANK], normCoords[MAX_RANK];
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(i, zShapeInfo, zCoords);
// deduce norm coords
for (int j = 0; j < dimsLen; ++j)
normCoords[j] = zCoords[dimensions[j]];
const T actualNorm = useAverage ? norm[shape::getOffset(normShapeInfo, normCoords)] / tadLen : norm[shape::getOffset(normShapeInfo, normCoords)];
if(actualNorm > clipNorm)
z[shape::getOffset(zShapeInfo, zCoords)] *= clipNorm / actualNorm;
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ static void clipByNormCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vClipNorm, const void* vNorm, const Nd4jLong* normShapeInfo, void* vz, const Nd4jLong* zShapeInfo,
const int* dimensions, const int dimsLen, const bool useAverage) {
clipByNormCuda<T><<<blocksPerGrid, threadsPerBlock, 512, *stream>>>(vClipNorm, vNorm, normShapeInfo, vz, zShapeInfo, dimensions, dimsLen, useAverage);
}
//////////////////////////////////////////////////////////////////////////
void clipByNorm(sd::LaunchContext* context, NDArray& input, NDArray& output, const std::vector<int>& dims, const NDArray& clipNorm, const bool isInplace, const bool useAverage) {
NDArray* z = nullptr;
if(isInplace) {
z = &input;
}
else {
output.assign(input);
z = &output;
}
if(dims.empty()) {
const NDArray actualNorm = useAverage ? z->reduceAlongDimension(reduce::Norm2, {}) / z->lengthOf() : z->reduceAlongDimension(reduce::Norm2, {});
if(actualNorm.e<float>(0) > clipNorm.e<float>(0))
*z *= clipNorm / actualNorm;
}
else {
const NDArray actualNorms = z->reduceAlongDimension(reduce::Norm2, dims);
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(z->rankOf(), dims);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (z->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "clipByNorm");
const int* dimensions = reinterpret_cast<const int*>(manager.replicatePointer(dimsToExclude.data(), dimsToExclude.size() * sizeof(int)));
NDArray::prepareSpecialUse({z}, {z, &actualNorms, &clipNorm});
BUILD_SINGLE_SELECTOR(z->dataType(), clipByNormCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), clipNorm.specialBuffer(), actualNorms.specialBuffer(), actualNorms.specialShapeInfo(), z->specialBuffer(), z->specialShapeInfo(), dimensions, (int)dimsToExclude.size(), useAverage), FLOAT_TYPES);
NDArray::registerSpecialUse({z}, {z, &actualNorms, &clipNorm});
manager.synchronize();
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void clipByNormBpCuda(const void* vClipNorm,
const void* vx, const Nd4jLong* xShapeInfo, // input
const void* vy, const Nd4jLong* yShapeInfo, // gradO
const void* vNorm, const Nd4jLong* normShapeInfo,
const void* vSum, const Nd4jLong* sumShapeInfo,
void* vz, const Nd4jLong* zShapeInfo, // gradI
const int* dimensions, const int dimsLen, const bool useAverage) {
const T clipNorm = *reinterpret_cast<const T*>(vClipNorm);
const T* norm = reinterpret_cast<const T*>(vNorm);
const T* sum = reinterpret_cast<const T*>(vSum);
const T* x = reinterpret_cast<const T*>(vx);
const T* y = reinterpret_cast<const T*>(vy);
T* z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, tadLen, totalThreads;
__shared__ bool sameOffsets;
if (threadIdx.x == 0) {
zLen = shape::length(zShapeInfo);
tadLen = zLen / shape::length(normShapeInfo);
totalThreads = gridDim.x * blockDim.x;
sameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, yShapeInfo, zShapeInfo);
}
__syncthreads();
int zCoords[MAX_RANK], normCoords[MAX_RANK];
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(i, zShapeInfo, zCoords);
const auto zOffset = shape::getOffset(zShapeInfo, zCoords);
const auto yOffset = sameOffsets ? zOffset : shape::getOffset(yShapeInfo, zCoords);
// deduce norm coords
for (int j = 0; j < dimsLen; ++j)
normCoords[j] = zCoords[dimensions[j]];
const T actualNorm = useAverage ? norm[shape::getOffset(normShapeInfo, normCoords)] / tadLen : norm[shape::getOffset(normShapeInfo, normCoords)];
if(actualNorm > clipNorm) {
const T sumVal = sum[shape::getOffset(sumShapeInfo, normCoords)];
const auto xOffset = sameOffsets ? zOffset : shape::getOffset(xShapeInfo, zCoords);
z[zOffset] = (clipNorm / actualNorm) * y[yOffset] * (static_cast<T>(1.f) - (x[xOffset] * sumVal) / (actualNorm * actualNorm));
}
else
z[zOffset] = y[yOffset];
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void clipByNormBp_(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dims, const NDArray& clipNorm, const bool useAverage) {
const int rank = input.rankOf();
auto actualNorms = input.reduceAlongDimension(reduce::Norm2, dims);
if(actualNorms.lengthOf() == 1) {
const T norm = useAverage ? actualNorms.e<T>(0) / static_cast<T>(input.lengthOf()) : actualNorms.e<T>(0);
auto clipVal = clipNorm.e<T>(0);
if(norm > clipVal) {
const T sum = input.reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = clipVal / norm;
const T factor2 = static_cast<T>(1.f) / (norm * norm); // 1 / (norm*norm*norm)
auto lambda = LAMBDA_TT(x, y, sum, factor1, factor2) {
return factor1 * y * (static_cast<T>(1.f) - factor2 * x * sum);
};
const_cast<NDArray&>(input).applyPairwiseLambda(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
const NDArray actualNorms = input.reduceAlongDimension(reduce::Norm2, dims);
const NDArray sums = input.reduceAlongDimension(reduce::Sum, dims);
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(gradI.rankOf(), dims);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (gradI.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "clipByNormBp");
const int* dimensions = reinterpret_cast<const int*>(manager.replicatePointer(dimsToExclude.data(), dimsToExclude.size() * sizeof(int)));
NDArray::prepareSpecialUse({&gradI}, {&actualNorms, &sums, &clipNorm, &input, &gradO});
clipByNormBpCuda<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(clipNorm.specialBuffer(), input.specialBuffer(), input.specialShapeInfo(), gradO.specialBuffer(), gradO.specialShapeInfo(), actualNorms.specialBuffer(), actualNorms.specialShapeInfo(), sums.specialBuffer(), sums.specialShapeInfo(), gradI.specialBuffer(), gradI.specialShapeInfo(), dimensions, (int)dimsToExclude.size(), useAverage);
NDArray::registerSpecialUse({&gradI}, {&actualNorms, &sums, &clipNorm, &input, &gradO});
manager.synchronize();
}
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBp_, (sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
void clipByNormBp(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage) {
const NDArray& castedInput = gradI.dataType() == input.dataType() ? input : input.cast(gradI.dataType());
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBp_, (context, castedInput, gradO, gradI, dimensions, clipNorm, useAverage), FLOAT_TYPES);
}
template <typename T>
void clipByGlobalNorm_(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
NDArray globalNorm = NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
for (auto i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm * l2norm;
}
globalNorm.applyTransform(transform::Sqrt, globalNorm); // = sd::math::nd4j_sqrt(globalNorm);
outputs[inputs.size()]->p(0, globalNorm);
globalNorm.syncToHost();
const T factor = static_cast<T>(clipNorm) / globalNorm.e<T>(0);
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (globalNorm.e<double>(0) <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda(lambda, *output);
}
}
}
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (context, inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
template <typename T>
static void __global__ clipByValueKernel(void* input, const Nd4jLong* inputShape, void* output, const Nd4jLong* outputShape, double leftBound, double rightBound) {
__shared__ T* outputBuf;
__shared__ T* inputBuf;
__shared__ Nd4jLong length;
__shared__ bool linearBuffers;
if (threadIdx.x == 0) {
outputBuf = reinterpret_cast<T *>(output);
inputBuf = reinterpret_cast<T *>(input);
length = shape::length(inputShape);
linearBuffers = shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape) && shape::elementWiseStride(inputShape) == 1;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
if (linearBuffers) {
if (inputBuf[e] > rightBound) outputBuf[e] = (T) rightBound;
else if (inputBuf[e] < leftBound) outputBuf[e] = (T) leftBound;
else outputBuf[e] = inputBuf[e];
}
else {
auto inputOffset = shape::getIndexOffset(e, inputShape);
auto outputOffset = shape::getIndexOffset(e, outputShape);
if (inputBuf[inputOffset] > rightBound) outputBuf[outputOffset] = (T) rightBound;
else if (inputBuf[inputOffset] < leftBound) outputBuf[outputOffset] = (T) leftBound;
else outputBuf[outputOffset] = inputBuf[outputOffset];
}
}
}
template <typename T>
static void clipByValue_(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto stream = context->getCudaStream();
if (!input.isActualOnDeviceSide())
input.syncToDevice();
NDArray::prepareSpecialUse({&output}, {&input});
clipByValueKernel<T><<<256, 512, 8192, *stream>>>(input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftBound, rightBound);
NDArray::registerSpecialUse({&output}, {&input});
}
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (context, input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
}
}
}