cavis/libnd4j/include/ops/declarable/helpers/impl/lstmLayer.cpp

1817 lines
91 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
// implementation of operation for LSTM cell with peep hole connections:
// http://www.bioinf.jku.at/publications/older/2604.pdf
// S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.
// and
// https://research.google.com/pubs/archive/43905.pdf
// Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network architectures for large scale acoustic modeling." INTERSPEECH, 2014.
#include <ops/declarable/helpers/lstmLayer.h>
#include <execution/Threads.h>
#include <ops/declarable/helpers/activations.h>
#include <helpers/ShapeUtils.h>
#include <helpers/MmulHelper.h>
// #include <VariableSpace.h>
// #include <ops/declarable/CustomOperations.h>
// #include<ops/declarable/helpers/transforms.h>
// #include <ops/declarable/helpers/legacy_helpers.h>
// #include <array/NDArrayList.h>
// #include <iterator>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
static void applyActivation(const NDArray& x, const int opId, const float alpha, const float beta, NDArray& z) {
switch (opId) {
case 0:
(const_cast<NDArray&>(x)).applyTransform(transform::Tanh, z);
break;
case 1:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::RELU, 0, z);
break;
case 2:
(const_cast<NDArray&>(x)).applyTransform(transform::Sigmoid, z);
break;
case 3: {
ExtraArguments args({ static_cast<double>(alpha), static_cast<double>(beta)});
(const_cast<NDArray&>(x)).applyTransform(transform::Affine, z, &args);
break;
}
case 4:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::LeakyRELU, alpha, z);
break;
case 5:
thresholdRelu(x.getContext(), x, alpha, z);
break;
case 6: {
ExtraArguments args({ static_cast<double>(alpha), static_cast<double>(beta)});
(const_cast<NDArray&>(x)).applyTransform(transform::ScaledTanh, z, &args);
break;
}
case 7:
(const_cast<NDArray&>(x)).applyTransform(transform::HardSigmoid, z);
break;
case 8:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::ELU, alpha, z);
break;
case 9:
(const_cast<NDArray&>(x)).applyTransform(transform::SoftSign, z);
break;
case 10:
(const_cast<NDArray&>(x)).applyTransform(transform::SoftPlus, z);
break;
default:
throw std::invalid_argument("LSTM_LAYER operation: wrong id number of activation !");
}
}
//////////////////////////////////////////////////////////////////////////
static void activationDeriv(const NDArray& x, const int opId, const float alpha, const float beta, NDArray& z) {
switch (opId) {
case 0:
(const_cast<NDArray&>(x)).applyTransform(transform::TanhDerivative, z);
break;
case 1:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::RELUDerivative, 0, z);
break;
case 2:
(const_cast<NDArray&>(x)).applyTransform(transform::SigmoidDerivative, z);
break;
case 3: {
z = alpha;
break;
}
case 4:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::LeakyRELUDerivative, alpha, z);
break;
case 5:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::RELUDerivative, alpha, z);
break;
case 6: {
auto func = PRAGMA_THREADS_FOR {
for(Nd4jLong i = start; i < stop; ++i) {
auto val = beta * x.e<float>(i);
z.p<float>(i, alpha * beta * (1.f - sd::math::nd4j_tanh<float,float>(val) * sd::math::nd4j_tanh<float,float>(val)));
}
};
samediff::Threads::parallel_for(func, 0, x.lengthOf());
break;
}
case 7:
(const_cast<NDArray&>(x)).applyTransform(transform::HardSigmoidDerivative, z);
break;
case 8:
(const_cast<NDArray&>(x)).applyScalar<float>(scalar::ELUDerivative, alpha, z);
break;
case 9:
(const_cast<NDArray&>(x)).applyTransform(transform::SoftSignDerivative, z);
break;
case 10: {
auto func = PRAGMA_THREADS_FOR {
for(Nd4jLong i = start; i < stop; ++i) {
auto val = sd::math::nd4j_exp<float, float>(x.e<float>(i));
z.p<float>(i, val / (1.f + val));
}
};
samediff::Threads::parallel_for(func, 0, x.lengthOf());
break;
}
default:
throw std::invalid_argument("LSTM_LAYER operation: wrong id number of activation !");
}
}
//////////////////////////////////////////////////////////////////////////
// FIXME - derivative undefined when not-clipped c has element/elements equal to -clipVal or clipVal
static void clipDeriv(const float clipVal, const NDArray& c, NDArray& z0, NDArray& z1, NDArray& z2, NDArray& z3) {
if(clipVal == 0)
return;
auto func = PRAGMA_THREADS_FOR {
for(Nd4jLong i = start; i < stop; ++i) {
const auto val = c.e<float>(i);
if(val == -clipVal || val == clipVal) {
z0.p<float>(i, 0.f);
z1.p<float>(i, 0.f);
z2.p<float>(i, 0.f);
z3.p<float>(i, 0.f);
}
}
};
samediff::Threads::parallel_for(func, 0, c.lengthOf());
}
//////////////////////////////////////////////////////////////////////////
static NDArray tensorAlongTimeBatchDims(const NDArray& arr, const int dataFormat, const int t1, const int t2, const int b1, const int b2) {
if(dataFormat == 0 || dataFormat == 3)
return arr({t1,t2, b1,b2, 0,0}); // TNS: [sL, bS, nIn]
if(dataFormat == 1)
return arr({b1,b2, t1,t2, 0,0}); // NTS: [bS, sL ,nIn]
return arr({b1,b2, 0,0, t1,t2}); // NST: [bS, nIn, sL]
}
//////////////////////////////////////////////////////////////////////////
static FORCEINLINE int getBatchTimeTotalIndex(const int dataFormat, const int sL, const int bS, const int t, const int b) {
if(dataFormat == 0 || dataFormat == 3)
return t * bS + b; // TNS: shape [sL, bS, nIn]
return b * sL + t; // NTS, NST: shape [bS, sL, nIn], [bS, nIn, sL]
}
//////////////////////////////////////////////////////////////////////////
void lstmLayerCell(const NDArray* x, const NDArray* Wx, const NDArray* Wr,
const NDArray* b, const NDArray* hI, const NDArray* cI, const NDArray* Wp,
const std::vector<float>& params,
NDArray* h, NDArray* c) {
// * -> means element-wise multiplication
// × -> means matrix multiplication
/************************ THIS IS NOT OPTIMAZED CODE ***********************************/
/** the objective is to provide math-readable code **/
// equations (no peephole connections)
// it = σ(Wxi × xt + Wri × ht-1 + bi)
// ft = σ(Wxf × xt + Wrf × ht-1 + bf)
// c't = tanh(Wxc × xt + Wrc × ht-1 + bc)
// ct = ft * ct-1 + it * c't
// ot = σ(Wxo × xt + Wro × ht-1 + bo)
// ht = ot * tanh(ct)
// equations (peephole connections are present)
// it = σ(Wxi × xt + Wri × ht-1 + Wpi * ct-1 + bi)
// ft = σ(Wxf × xt + Wrf × ht-1 + Wpf * ct-1 + bf)
// c't = tanh(Wxc × xt + Wrc × ht-1 + bc)
// ct = ft * ct-1 + it * c't
// ot = σ(Wxo × xt + Wro × ht-1 + Wpo * ct + bo)
// ht = ot * tanh(ct)
// IDs for activations: 0=tanh, 1=relu, 2=sigmoid, 3=affine, 4=leaky relu, 5= thresholded relu, 6=scaled tanh, 7=hard sigmoid, 8=ELU, 9=softsign, 10=softplus
// params[0] - dataFormat, ignore
// params[1] - directionMode, ignore
// params[2] - cell clipping value, if it = 0 then do not apply clipping
// params[3] - activation ID for input (i), forget (f) and output (o) gates
// params[4] - alpha value for gates activation
// params[5] - beta value for gates activation
// params[6] - activation ID for cell state (c)
// params[7] - alpha value for cell state activation
// params[8] - beta value for cell state activation
// params[9] - activation ID for output (h)
// params[10] - alpha value for output activation
// params[11] - beta value for output activation
// INPUTS:
// x - current input at time t, [bS, nIn] or [nIn] if seqLen != nullptr
// Wx - input weights [nIn, 4*nOut]
// Wr - recurrent weights [nOut, 4*nOut]
// b - biases [4*nOut], optional, may be nullptr
// hI - (ht-1) previous (initial) output at time t-1, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// cI - (ct-1) previous (initial) cell state at time t-1, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// Wp - peephole weights [3*nOut], optional, may be nullptr
// OUTPUTS:
// h - current output, that is at current time step t, [bS, nOut] or [nOut] if seqLen != nullptr
// c - current cell state, that is at current time step t, [bS, nOut] or [nOut] if seqLen != nullptr
// !!! dimension 4*nOut implies order it, ft, c't, ot
// !!! dimension 3*nOut implies order it, ft, ot
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
auto z = mmul(*x, *Wx) + mmul(*hI, *Wr); // [bs, nIn] * [nIn, 4*nOut] + [bs, nOut] * [nOut, 4*nOut] = [bS, 4*nOut]
//or [nIn] * [nIn, 4*nOut] + [nOut] * [nOut, 4*nOut] = [4*nOut]
// add biases if they are given
if(b != nullptr)
z += *b; // broadcast [bS, 4*nOut](or[4*nOut]) + [4*nOut] = [bS, 4*nOut]
auto zi = x->rankOf() == 1 ? z({0, nOut}) : z({0,0, 0, nOut}); // input gate it, [bS, nOut](or[nOut])
auto zf = x->rankOf() == 1 ? z({nOut, 2*nOut}) : z({0,0, nOut, 2*nOut}); // forget gate ft, [bS, nOut](or[nOut])
auto zg = x->rankOf() == 1 ? z({2*nOut, 3*nOut}) : z({0,0, 2*nOut, 3*nOut}); // cell gate c't, [bS, nOut](or[nOut])
auto zo = x->rankOf() == 1 ? z({3*nOut, 4*nOut}) : z({0,0, 3*nOut, 4*nOut}); // output gate ot, [bS, nOut](or[nOut])
// peephole connections for input and forget gates
if(Wp != nullptr) {
zi += *cI * (*Wp)({0, nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
zf += *cI * (*Wp)({nOut, 2*nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
}
applyActivation(zi, params[3], params[4], params[5], zi); // inplace
applyActivation(zf, params[3], params[4], params[5], zf); // inplace
applyActivation(zg, params[6], params[7], params[8], zg); // inplace
c->assign(zf * *cI + zi * zg); // [bS, nOut] * [bS, nOut] + [bS, nOut] * [bS, nOut] = [bS, nOut](or[nOut])
// if clipping value is non-zero then cell state is clipped by this value prior to the cell output activation
if(params[2] != 0)
c->applyScalar(scalar::LstmClip, params[2], *c);
// peephole connections for output gate
if(Wp != nullptr)
zo += *c * (*Wp)({2*nOut, 3*nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
applyActivation(zo, params[3], params[4], params[5], zo);
applyActivation(*c, params[9], params[10], params[11], *h);
*h *= zo; // [bS, nOut] * [bS, nOut](or[nOut])
}
//////////////////////////////////////////////////////////////////////////
// this auxiliary ff should be running before backprop
void lstmLayerCell(const NDArray* x, const NDArray* Wx, const NDArray* Wr,
const NDArray* b, const NDArray* hI, const NDArray* cI, const NDArray* Wp,
const std::vector<float>& params,
NDArray* z, NDArray* a, NDArray* h, NDArray* c) {
// z - zi, zf, zg, zo
// a - i, f, g, o
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
z->assign(mmul(*x, *Wx) + mmul(*hI, *Wr)); // [bs, nIn] * [nIn, 4*nOut] + [bs, nOut] * [nOut, 4*nOut] = [bS, 4*nOut]
//or [nIn] * [nIn, 4*nOut] + [nOut] * [nOut, 4*nOut] = [4*nOut]
// add biases if they are given
if(b != nullptr)
*z += *b; // broadcast [bS, 4*nOut](or[4*nOut]) + [4*nOut] = [bS, 4*nOut]
auto zi = x->rankOf() == 1 ? (*z)({0, nOut}) : (*z)({0,0, 0, nOut}); // input gate it, [bS, nOut](or[nOut])
auto zf = x->rankOf() == 1 ? (*z)({nOut, 2*nOut}) : (*z)({0,0, nOut, 2*nOut}); // forget gate ft, [bS, nOut](or[nOut])
auto zg = x->rankOf() == 1 ? (*z)({2*nOut, 3*nOut}) : (*z)({0,0, 2*nOut, 3*nOut}); // cell gate c't, [bS, nOut](or[nOut])
auto zo = x->rankOf() == 1 ? (*z)({3*nOut, 4*nOut}) : (*z)({0,0, 3*nOut, 4*nOut}); // output gate ot, [bS, nOut](or[nOut])
auto i = x->rankOf() == 1 ? (*a)({0, nOut}) : (*a)({0,0, 0, nOut}); // input gate it, [bS, nOut](or[nOut])
auto f = x->rankOf() == 1 ? (*a)({nOut, 2*nOut}) : (*a)({0,0, nOut, 2*nOut}); // forget gate ft, [bS, nOut](or[nOut])
auto g = x->rankOf() == 1 ? (*a)({2*nOut, 3*nOut}) : (*a)({0,0, 2*nOut, 3*nOut}); // cell gate c't, [bS, nOut](or[nOut])
auto o = x->rankOf() == 1 ? (*a)({3*nOut, 4*nOut}) : (*a)({0,0, 3*nOut, 4*nOut}); // output gate ot, [bS, nOut](or[nOut])
// peephole connections for input and forget gates
if(Wp != nullptr) {
zi += *cI * (*Wp)({0, nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
zf += *cI * (*Wp)({nOut, 2*nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
}
applyActivation(zi, params[3], params[4], params[5], i);
applyActivation(zf, params[3], params[4], params[5], f);
applyActivation(zg, params[6], params[7], params[8], g);
c->assign(f * *cI + i * g); // [bS, nOut] * [bS, nOut] + [bS, nOut] * [bS, nOut] = [bS, nOut](or[nOut])
// if clipping value is non-zero then cell state is clipped by this value prior to the cell output activation
if(params[2] != 0)
c->applyScalar(scalar::LstmClip, params[2], *c);
// peephole connections for output gate
if(Wp != nullptr)
zo += *c * (*Wp)({2*nOut, 3*nOut}); // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
applyActivation(zo, params[3], params[4], params[5], o);
applyActivation(*c, params[9], params[10], params[11], *h);
*h *= o; // [bS, nOut] * [bS, nOut](or[nOut])
}
//////////////////////////////////////////////////////////////////////////
void lstmLayerCellBp(const NDArray* x, const NDArray* Wx, const NDArray* Wr, const NDArray* b, const NDArray* hI, const NDArray* cI, const NDArray* Wp,
const NDArray* dLdh, const NDArray* dLdhL, const NDArray* dLdcL,
const NDArray* z, const NDArray* a, const NDArray* c, const std::vector<float>& params,
NDArray* dLdx, NDArray* dLdWx, NDArray* dLdWr, NDArray* dLdhI, NDArray* dLdcI, NDArray* dLdb, NDArray* dLdWp) {
/************************ THIS IS NOT OPTIMAZED CODE ***********************************/
/** the objective is to provide math-readable code **/
// equations (no peephole connections)
// zi = x × Wxi + hI × Wri + bi
// zf = x × Wxf + hI × Wrf + bf
// zg = x × Wxg + hI × Wrg + bg
// zo = x × Wxo + hI × Wro + bo
// i = act(zi)
// f = act(zf)
// g = actC(zg)
// o = act(zo)
// c = clip(f * cI + i * g)
// h = o * actH(c)
// equations (peephole connections are present)
// zi = x × Wxi + hI × Wri + cI * Wpi + bi
// zf = x × Wxf + hI × Wrf + cI * Wpf + bf
// zg = x × Wxg + hI × Wrg + bg
// zo = x × Wxo + hI × Wro + c * Wpo + bo
// i = act(zi)
// f = act(zf)
// g = actC(zg)
// o = act(zo)
// c = clip(f * cI + i * g)
// h = o * actH(c)
// IDs for activations: 0=tanh, 1=relu, 2=sigmoid, 3=affine, 4=leaky relu, 5= thresholded relu, 6=scaled tanh, 7=hard sigmoid, 8=ELU, 9=softsign, 10=softplus
// params[0] - dataFormat, ignore
// params[1] - directionMode, ignore
// params[2] - cell clipping value, if it = 0 then do not apply clipping
// params[3] - activation ID for input (i), forget (f) and output (o) gates
// params[4] - alpha value for gates activation
// params[5] - beta value for gates activation
// params[6] - activation ID for cell state (c)
// params[7] - alpha value for cell state activation
// params[8] - beta value for cell state activation
// params[9] - activation ID for output (h)
// params[10] - alpha value for output activation
// params[11] - beta value for output activation
// INPUTS:
// x - current input at time t, [bS, nIn] or [nIn] if seqLen != nullptr
// Wx - input weights [nIn, 4*nOut]
// Wr - recurrent weights [nOut, 4*nOut]
// b - biases [4*nOut], optional, may be nullptr
// hI - (ht-1) previous (initial) output at time t-1, [bS, nOut] or [nOut] if seqLen != nullptr
// cI - (ct-1) previous (initial) cell state at time t-1, [bS, nOut] or [nOut] if seqLen != nullptr
// Wp - peephole weights [3*nOut], optional, may be nullptr
// dLdh - loss derivative with respect to h at each time step, [bS, nOut] or [nOut] if seqLen != nullptr
// dLdhL - loss derivative with respect to h at last time step, [bS, nOut] or [nOut] if seqLen != nullptr
// dLdcL - loss derivative with respect to c at last time step, [bS, nOut] or [nOut] if seqLen != nullptr
// z - zi,zf,zg,zo taken from ff outputs to reduce amount of calculations in bp, [bS, 4*nOut]
// a - i,f,g,o taken from ff outputs to reduce amount of calculations in bp, [bS, 4*nOut]
// c - taken from ff outputs to reduce amount of calculations in bp, [bS, nOut]
// OUTPUTS:
// dLdx - loss derivative with respect to x, [bS, nIn] or [nIn] if seqLen != nullptr
// dLdWx - loss derivative with respect to Wx, [nIn, 4*nOut]
// dLdWr - loss derivative with respect to Wr, [nOut, 4*nOut]
// dLdb - loss derivative with respect to b, optional, may be nullptr, [4*nOut]
// dLdhI - loss derivative with respect to hI, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// dLdcI - loss derivative with respect to cI, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// dLdWp - loss derivative with respect to Wp, optional, may be nullptr, [3*nOut]
// !!! dimension 4*nOut implies order i, f, g, o
// !!! dimension 3*nOut implies order i, f, o
// dhdc = o*tanhDeriv + Wp ? tanh(c)*dodzo*dzodc : 0 [bS, nOut]
// dcdcI = f + Wp ? dcdzi*dzidcI + dcdzf*dzfdcI : 0 [bS, nOut]
// dLdhI += dLdh; [bS, nOut]
// dLdcI += dLdhI * dhdc; [bS, nOut]
// dLdzi = dLdcI*dcdi*didzi; [bS, nOut](or[nOut])
// dLdzf = dLdcI*dcdf*dfdzf; [bS, nOut](or[nOut])
// dLdzg = dLdcI*dcdg*dgdzg; [bS, nOut](or[nOut])
// dLdzo = dLdhI*dhdo*dodzo; [bS, nOut](or[nOut])
// dLdx = dLdzi×WxiT + dLdzf×WxfT + dLdzg×WxgT + dLdzo×WxoT, [bS, nIn]
// dLdhI = dLdzi×WriT + dLdzf×WrfT + dLdzg×WrgT + dLdzo×WroT, [bS, nOut]
// dLdcI = dLdcI*dcdcI, [bS, nOut]
// dLdWxi = xT×dLdzi [nIn, bS] x [bS, nOut] = [nIn, nOut]
// dLdWxf = xT×dLdzf [nIn, bS] x [bS, nOut] = [nIn, nOut]
// dLdWxg = xT×dLdzg [nIn, bS] x [bS, nOut] = [nIn, nOut]
// dLdWxo = xT×dLdzo [nIn, bS] x [bS, nOut] = [nIn, nOut]
// dLdWri = hIT×dLdzi [nOut, bS] x [bS, nOut] = [nOut, nOut]
// dLdWrf = hIT×dLdzf [nOut, bS] x [bS, nOut] = [nOut, nOut]
// dLdWrg = hIT×dLdzg [nOut, bS] x [bS, nOut] = [nOut, nOut]
// dLdWro = hIT×dLdzo [nOut, bS] x [bS, nOut] = [nOut, nOut]
// dLdbi = dLdzi.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdbf = dLdzf.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdbg = dLdzg.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdbo = dLdzo.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdWpi = (dLdzi*cI).reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdWpf = (dLdzf*cI).reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
// dLdWpo = (dLdzo*c) .reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut]
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
const Nd4jLong nIn = x->sizeAt(-1);
NDArray zi = x->rankOf() == 1 ? (*z)({0, nOut}) : (*z)({0,0, 0, nOut}); // input gate i, [bS, nOut](or[nOut])
NDArray zf = x->rankOf() == 1 ? (*z)({nOut, 2*nOut}) : (*z)({0,0, nOut, 2*nOut}); // forget gate f, [bS, nOut](or[nOut])
NDArray zg = x->rankOf() == 1 ? (*z)({2*nOut, 3*nOut}) : (*z)({0,0, 2*nOut, 3*nOut}); // cell gate g, [bS, nOut](or[nOut])
NDArray zo = x->rankOf() == 1 ? (*z)({3*nOut, 4*nOut}) : (*z)({0,0, 3*nOut, 4*nOut}); // output gate o, [bS, nOut](or[nOut])
NDArray i = x->rankOf() == 1 ? (*a)({0, nOut}) : (*a)({0,0, 0, nOut}); // input gate i, [bS, nOut](or[nOut])
NDArray f = x->rankOf() == 1 ? (*a)({nOut, 2*nOut}) : (*a)({0,0, nOut, 2*nOut}); // forget gate f, [bS, nOut](or[nOut])
NDArray g = x->rankOf() == 1 ? (*a)({2*nOut, 3*nOut}) : (*a)({0,0, 2*nOut, 3*nOut}); // cell gate g, [bS, nOut](or[nOut])
NDArray o = x->rankOf() == 1 ? (*a)({3*nOut, 4*nOut}) : (*a)({0,0, 3*nOut, 4*nOut}); // output gate o, [bS, nOut](or[nOut])
NDArray dLdz = z->ulike(); // [bS, 4*nOut](or[4*nOut])
NDArray dLdzi = x->rankOf() == 1 ? dLdz({0, nOut}) : dLdz({0,0, 0, nOut});
NDArray dLdzf = x->rankOf() == 1 ? dLdz({nOut, 2*nOut}) : dLdz({0,0, nOut, 2*nOut});
NDArray dLdzg = x->rankOf() == 1 ? dLdz({2*nOut, 3*nOut}) : dLdz({0,0, 2*nOut, 3*nOut});
NDArray dLdzo = x->rankOf() == 1 ? dLdz({3*nOut, 4*nOut}) : dLdz({0,0, 3*nOut, 4*nOut});
// dcdzi = dcdi*didzi, [bS, nOut](or[nOut])
activationDeriv(zi, params[3], params[4], params[5], dLdzi); // didzi, inplace
dLdzi *= g; // dcdi = g*clipDeriv
// dcdzf = dcdf*dfdzf, [bS, nOut](or[nOut])
activationDeriv(zf, params[3], params[4], params[5], dLdzf); // dfdzf, inplace
dLdzf *= *cI; // dcdf = cI*clipDeriv
// dcdzg = dcde*dedzg, [bS, nOut](or[nOut])
activationDeriv(zg, params[6], params[7], params[8], dLdzg); // dgdzg, inplace
dLdzg *= i; // dcdf = i*clipDeriv
// dhdzo = dhdo*dodzo = actH(c)*dodzo, [bS, nOut](or[nOut])
activationDeriv(zo, params[3], params[4], params[5], dLdzo);
NDArray temp = dLdzo.ulike();
applyActivation(*c, params[9], params[10], params[11], temp); // actH(c), inplace
dLdzo *= temp;
// dcdcI
NDArray dcdcI = f.dup(); // dcdcI = f*clipDeriv [bS, nOut](or[nOut])
// take into account possible deposit from clipping derivative
clipDeriv(params[2], *c, dLdzi, dLdzf, dLdzg, dcdcI);
// dhdc
NDArray dhdc = c->ulike();
activationDeriv(*c, params[9], params[10], params[11], dhdc); // [bS, nOut]
dhdc *= o;
if(Wp) {
dhdc += dLdzo*(*Wp)({2*nOut, 3*nOut});
dcdcI += dLdzi*(*Wp)({0, nOut}) + dLdzf*(*Wp)({nOut, 2*nOut}); // broadcast [bS, nOut] * nOut + ...
}
if(dLdh)
*dLdhI += *dLdh;
if(dLdhL)
*dLdhI += *dLdhL;
if(dLdcL)
*dLdcI += *dLdcL;
*dLdcI += *dLdhI * dhdc;
dLdzi *= *dLdcI; // [bS, nOut](or[nOut])
dLdzf *= *dLdcI; // [bS, nOut](or[nOut])
dLdzg *= *dLdcI; // [bS, nOut](or[nOut])
dLdzo *= *dLdhI; // [bS, nOut](or[nOut])
// dLdx
NDArray WxT = Wx->transpose();
MmulHelper::mmul(&dLdz, &WxT, dLdx); // [bS, 4*nOut] x [4*nOut, nIn] (or [4*nOut] x [4*nOut, nIn]) = [bS, nIn] ( or[nIn] )
// dLdhI
NDArray WrT = Wr->transpose();
MmulHelper::mmul(&dLdz, &WrT, dLdhI); // [bS, 4*nOut] x [4*nOut, nOut] (or [4*nOut] x [4*nOut, nOut]) = [bS, nOut] ( or[nOut] )
// dLdcI
dLdcI->assign(*dLdcI*dcdcI); // [bS, nOut](or[nOut])
if(x->rankOf() == 1) {
NDArray xT = x->reshape(x->ordering(),{nIn, 1}); // [nIn] -> [nIn, 1]
NDArray hIT = hI->reshape(hI->ordering(),{nOut, 1}); // [nOut] -> [nOut, 1]
NDArray dLdzR = dLdz.reshape(dLdz.ordering(), {1, 4*nOut}); // [nOut] -> [1, 4*nOut]
// dLdWx
*dLdWx += mmul(xT, dLdzR); // [nIn, 1] x [1, 4*nOut] = [nIn, 4*nOut]
// dLdWr
*dLdWr += mmul(hIT, dLdzR); // [nOut, 1] x [1, 4*nOut] = [nOut, 4*nOut]
}
else {
// dLdWx
*dLdWx += mmul(x->transpose(), dLdz); // [nIn, bS] x [bS, 4*nOut] = [nIn, 4*nOut]
// dLdWr
*dLdWr += mmul(hI->transpose(), dLdz); // [nOut, bS] x [bS, 4*nOut] = [nOut, 4*nOut]
}
// dLdb
if(b && x->rankOf() == 1)
*dLdb += dLdz; // [4*nOut]
else if(b)
*dLdb += dLdz.reduceAlongDimension(reduce::Sum, {0}); // [bS, 4*nOut] -> reduce -> [4*nOut];
// dLdWp
if(Wp && x->rankOf() == 1) {
(*dLdWp)({ 0,nOut}) += std::move(dLdzi)*(*cI); // [nOut]
(*dLdWp)({ nOut,2*nOut}) += std::move(dLdzf)*(*cI); // [nOut]
(*dLdWp)({2*nOut,3*nOut}) += std::move(dLdzo)*(*c); // [nOut]
}
else if(Wp) {
NDArray temp(Wp->ordering(), {nOut}, Wp->dataType(), Wp->getContext());
(std::move(dLdzi)*(*cI)).reduceAlongDimension(reduce::Sum, temp, {0}); // [bS, nOut] -> reduce -> [nOut]
(*dLdWp)({0,nOut}) += temp;
(std::move(dLdzf)*(*cI)).reduceAlongDimension(reduce::Sum, temp, {0}); // [bS, nOut] -> reduce -> [nOut]
(*dLdWp)({nOut,2*nOut}) += temp;
(std::move(dLdzo)*(*c)).reduceAlongDimension(reduce::Sum, temp, {0}); // [bS, nOut] -> reduce -> [nOut]
(*dLdWp)({2*nOut,3*nOut}) += temp;
}
}
//////////////////////////////////////////////////////////////////////////
void lstmLayerTimeLoop(const NDArray* x, const NDArray* Wx, const NDArray* Wr,
const NDArray* b, const NDArray* seqLen, const NDArray* hI, const NDArray* cI, const NDArray* Wp,
const std::vector<float>& params,
const bool forward,
NDArray* h, NDArray* hL, NDArray* cL) {
// INPUTS:
// x - current input [sL, bS, nIn], [bS, sL, nIn], [bS, nIn, sL],
// Wx - input weights [nIn, 4*nOut]
// Wr - recurrent weights [nOut, 4*nOut]
// b - biases [4*nOut], optional, may be nullptr
// seqLen - [bS], optional, may be nullptr
// hI - initial output [bS, nOut], optional, may be nullptr
// cI - initial cell state at time t-1 [bS, nOut], optional, may be nullptr
// Wp - peephole weights [3*nOut], optional, may be nullptr
// OUTPUTS:
// h - output [sL, bS, nOut], [bS, sL, nOut], [bS, nOut, sL], optional, may be nullptr
// hL - output at last step [bS, nOut], optional, may be nullptr
// cL - cell state at last step [bS, nOut], optional, may be nullptr
// params = {dataFormat, directionMode, cellClip, gateAct, gateAlpha, gateBeta, cellAct, cellAlpha, cellBeta, outAct, outAlpha, outBeta};
// dataFormat: 0,3 = [sL, bS, nIn], 1 = [bS, sL ,nIn], 2 = [bS, nIn, sL]
const int dataFormat = params[0];
const int directionMode = params[1];
const Nd4jLong sL = dataFormat == 3 ? x->sizeAt(0) : x->sizeAt(dataFormat);
const Nd4jLong bS = dataFormat == 1 || dataFormat == 2 ? x->sizeAt(0) : x->sizeAt(1);
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
const std::vector<Nd4jLong> shapeOut = {bS, nOut};
const auto type = h ? h->dataType() : (hL ? hL->dataType() : cL->dataType());
auto h0 = const_cast<NDArray*>(hI);
if(!hI) {
h0 = new NDArray(x->ordering(), shapeOut, type, x->getContext());
h0->nullify();
}
auto c0 = const_cast<NDArray*>(cI);
if(!cI) {
c0 = new NDArray(x->ordering(), shapeOut, type, x->getContext());
c0->nullify();
}
auto ct = cL;
if(!cL)
ct = new NDArray(x->ordering(), shapeOut, type, x->getContext());
auto ht = hL;
if(!h && !hL)
ht = new NDArray(x->ordering(), shapeOut, type, x->getContext());
// create sets of required (depends on seqLen presence) sub-arrays
std::vector<int> dims;
ResultSet *xSet(nullptr), *hSet(nullptr), *h0Set(nullptr), *c0Set(nullptr), *htSet(nullptr), *ctSet(nullptr);
if(!seqLen) {
dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {dataFormat < 3 ? dataFormat : 0}); // points on bS and nIn/nOut axes
xSet = new ResultSet(x->allTensorsAlongDimension(dims)); // sub-arrays with shape [bS, nIn]
if(h)
hSet = new ResultSet(h->allTensorsAlongDimension(dims)); // sub-arrays with shape [bS, nOut]
}
else {
dims = dataFormat == 2 ? std::vector<int>({1}) : std::vector<int>({2}); // points on nIn/nOut axis
xSet = new ResultSet(x->allTensorsAlongDimension(dims)); // sub-arrays with shape [nIn]
h0Set = new ResultSet(h0->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
c0Set = new ResultSet(c0->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
ctSet = new ResultSet(ct->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
if(h)
hSet = new ResultSet(h->allTensorsAlongDimension(dims)); // sub-arrays with shape [nOut]
if(ht)
htSet = new ResultSet(ht->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
}
// loops
if(forward) {
if(!seqLen) {
if(!h) { // seqLen and h are absent
lstmLayerCell(xSet->at(0), Wx, Wr, b, h0, c0, Wp, params, ht, ct); // first time step
for (Nd4jLong t = 1; t < sL; ++t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, ht, ct, Wp, params, ht, ct); // rest time steps
}
else { // seqLen is absent and h is present
lstmLayerCell(xSet->at(0), Wx, Wr, b, h0, c0, Wp, params, hSet->at(0), ct); // first time step
for (Nd4jLong t = 1; t < sL; ++t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, hSet->at(t - 1), ct, Wp, params, hSet->at(t), ct); // rest time steps
if(hL)
hL->assign(hSet->at(sL - 1)); // assign last output to hL if it is not nullptr
}
}
else {
if(!h) { // seqLen is present and h is absent
for (Nd4jLong e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, 0, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // first time step
for (int t = 1; t < limit; ++t) {
ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, htSet->at(e), ctSet->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // rest time steps
}
}
}
else { // seqLen and h are present
for (Nd4jLong e = 0; e < bS; ++e) {
int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*h, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto indPrev = getBatchTimeTotalIndex(dataFormat, sL, bS, 0, e);
lstmLayerCell(xSet->at(indPrev), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, hSet->at(indPrev), ctSet->at(e)); // first time step
for (int t = 1; t < limit; ++t) {
auto indCurr = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(indCurr), Wx, Wr, b, hSet->at(indPrev), ctSet->at(e), Wp, params, hSet->at(indCurr), ctSet->at(e)); // rest time steps
indPrev = indCurr;
}
if(hL)
htSet->at(e)->assign(hSet->at(indPrev)); // assign last output to hL if hL is not nullptr
if(limit != sL)
tensorAlongTimeBatchDims(*h, dataFormat, limit,sL, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
}
}
else { // backward
if(!seqLen) {
if(!h) { // seqLen and h are absent
lstmLayerCell(xSet->at(sL - 1), Wx, Wr, b, h0, c0, Wp, params, ht, ct); // first time step
for (Nd4jLong t = sL - 2; t >= 0; --t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, ht, ct, Wp, params, ht, ct); // rest time steps
}
else { // seqLen is absent and h is present
lstmLayerCell(xSet->at(sL - 1), Wx, Wr, b, h0, c0, Wp, params, hSet->at(sL - 1), ct); // first time step
for (Nd4jLong t = sL - 2; t >= 0; --t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, hSet->at(t + 1), ct, Wp, params, hSet->at(t), ct); // rest time steps
if(hL)
hL->assign(hSet->at(0)); // assign last output to hL if it is not nullptr
}
}
else if(directionMode == 1) { // only backward, no bidirectional mode
if(!h) { // h is absent and seqLen is present
for (Nd4jLong e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, sL - 1, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // first time step
for (Nd4jLong t = sL - 2; t >= sL - limit; --t) {
ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, htSet->at(e), ctSet->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // rest time steps
}
}
}
else { // seqLen and h are present
for (Nd4jLong e = 0; e < bS; ++e) {
int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*h, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto indPrev = getBatchTimeTotalIndex(dataFormat, sL, bS, sL - 1, e);
lstmLayerCell(xSet->at(indPrev), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, hSet->at(indPrev), ctSet->at(e)); // first time step
for (Nd4jLong t = sL - 2; t >= sL - limit; --t) {
auto indCurr = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(indCurr), Wx, Wr, b, hSet->at(indPrev), ctSet->at(e), Wp, params, hSet->at(indCurr), ctSet->at(e)); // rest time steps
indPrev = indCurr;
}
if(hL)
htSet->at(e)->assign(hSet->at(indPrev)); // assign last output to hL if it is not nullptr
if(limit != sL)
tensorAlongTimeBatchDims(*h, dataFormat, 0,sL-limit, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
}
else { // backward in bidirectional mode
if(!h) { // h is absent and seqLen is present
for (Nd4jLong e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, limit - 1, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // first time step
for (int t = limit - 2; t >= 0; --t) {
ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(ind), Wx, Wr, b, htSet->at(e), ctSet->at(e), Wp, params, htSet->at(e), ctSet->at(e)); // rest time steps
}
}
}
else { // seqLen and h are present
for (Nd4jLong e = 0; e < bS; ++e) {
int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*h, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
if(cL)
ctSet->at(e)->nullify();
if(hL)
htSet->at(e)->nullify();
continue;
}
auto indPrev = getBatchTimeTotalIndex(dataFormat, sL, bS, limit - 1, e);
lstmLayerCell(xSet->at(indPrev), Wx, Wr, b, h0Set->at(e), c0Set->at(e), Wp, params, hSet->at(indPrev), ctSet->at(e)); // first time step
for (int t = limit - 2; t >= 0; --t) {
auto indCurr = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
lstmLayerCell(xSet->at(indCurr), Wx, Wr, b, hSet->at(indPrev), ctSet->at(e), Wp, params, hSet->at(indCurr), ctSet->at(e)); // rest time steps
indPrev = indCurr;
}
if(hL)
htSet->at(e)->assign(hSet->at(indPrev)); // assign last output to hL if it is not nullptr
if(limit != sL)
tensorAlongTimeBatchDims(*h, dataFormat, limit,sL, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
}
}
delete xSet;
delete hSet;
delete h0Set;
delete c0Set;
delete htSet;
delete ctSet;
if(!hI)
delete h0;
if(!cI)
delete c0;
if(!cL)
delete ct;
if(!h && !hL)
delete ht;
}
//////////////////////////////////////////////////////////////////////////
void lstmLayerTimeLoopBp(const NDArray* x, const NDArray* Wx, const NDArray* Wr,
const NDArray* b, const NDArray* seqLen, NDArray* hI, NDArray* cI, const NDArray* Wp,
const NDArray* dLdh, const NDArray* dLdhL, const NDArray* dLdcL,
const std::vector<float>& params, const bool forward,
NDArray* dLdx, NDArray* dLdWx, NDArray* dLdWr, NDArray* dLdb, NDArray* dLdhI, NDArray* dLdcI, NDArray* dLdWp) {
// INPUTS:
// x - current input [sL, bS, nIn], [bS, sL, nIn], [bS, nIn, sL],
// Wx - input weights [nIn, 4*nOut]
// Wr - recurrent weights [nOut, 4*nOut]
// b - biases [4*nOut], optional, may be nullptr
// seqLen - [bS], optional, may be nullptr
// hI - initial output [bS, nOut], optional, may be nullptr
// cI - initial cell state at time t-1 [bS, nOut], optional, may be nullptr
// Wp - peephole weights [3*nOut], optional, may be nullptr
// dLdh - gradient vs. output [sL, bS, nOut], [bS, sL, nOut], [bS, nOut, sL], optional, may be nullptr
// dLdhL - gradient vs. output at last time step [bS, nOut], optional, may be nullptr
// dLdcL - gradient vs. cell state at last time step [bS, nOut], optional, may be nullptr
// OUTPUTS:
// dLdx - gradient vs. input [sL, bS, nIn], [bS, sL, nIn], [bS, nIn, sL]
// dLdWx - gradient vs. input weights [nIn, 4*nOut]
// dLdWr - gradient vs. recurrent weights [nOut, 4*nOut]
// dLdb - gradient vs. biases [4*nOut], optional, may be nullptr
// dLdhI - gradient vs. initial output [bS, nOut], optional, may be nullptr
// dLdcI - gradient vs. initial cell state at time t-1 [bS, nOut], optional, may be nullptr
// dLdWp - gradient vs. peephole weights [3*nOut], optional, may be nullptr
// params = {dataFormat, directionMode, cellClip, gateAct, gateAlpha, gateBeta, cellAct, cellAlpha, cellBeta, outAct, outAlpha, outBeta};
// dataFormat: 0,3 = [sL, bS, nIn], 1 = [bS, sL ,nIn], 2 = [bS, nIn, sL]
const int dataFormat = params[0];
const int directionMode = params[1];
const int sL = dataFormat == 3 ? x->sizeAt(0) : x->sizeAt(dataFormat);
const int bS = dataFormat == 1 || dataFormat == 2 ? x->sizeAt(0) : x->sizeAt(1);
const int nOut = Wx->sizeAt(-1) / 4;
const auto type = dLdh ? dLdh->dataType() : (dLdhL ? dLdhL->dataType() : dLdcL->dataType());
auto dLdh0 = dLdhI;
if(!hI)
dLdh0 = new NDArray(x->ordering(), {bS, nOut}, type, x->getContext()); // this constructor nullifies array automatically
auto dLdc0 = dLdcI;
if(!cI)
dLdc0 = new NDArray(x->ordering(), {bS, nOut}, type, x->getContext()); // this constructor nullifies array automatically
NDArray z(x->ordering(), {sL, bS, 4*nOut}, type, x->getContext());
NDArray a = z.ulike();
NDArray h(x->ordering(), {sL+1, bS, nOut}, type, x->getContext());
NDArray c = h.ulike();
// create sets of required (depends on seqLen presence) sub-arrays
std::vector<int> dims;
ResultSet *xSet(nullptr), *dLdxSet(nullptr), *hSet(nullptr), *cSet(nullptr), *zSet(nullptr), *aSet(nullptr), *dLdhSet(nullptr),
*dLdh0Set(nullptr), *dLdc0Set(nullptr), *dLdhLSet(nullptr), *dLdcLSet(nullptr), *hISet(nullptr), *cISet(nullptr);
if(!seqLen) {
dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {dataFormat < 3 ? dataFormat : 0}); // points on [bS, nIn/nOut]
xSet = new ResultSet(x->allTensorsAlongDimension(dims)); // sub-arrays with shape [bS, nIn]
dLdxSet = new ResultSet(dLdx->allTensorsAlongDimension(dims)); // sub-arrays with shape [bS, nIn]
hSet = new ResultSet(h.allTensorsAlongDimension({1, 2})); // sub-arrays with shape [bS, nOut]
cSet = new ResultSet(c.allTensorsAlongDimension({1, 2})); // sub-arrays with shape [bS, nOut]
zSet = new ResultSet(z.allTensorsAlongDimension({1, 2})); // sub-arrays with shape [bS, 4*nOut]
aSet = new ResultSet(a.allTensorsAlongDimension({1, 2})); // sub-arrays with shape [bS, 4*nOut]
if(dLdh)
dLdhSet = new ResultSet(dLdh->allTensorsAlongDimension(dims)); // sub-arrays with shape [bS, nOut]
}
else {
dims = dataFormat == 2 ? std::vector<int>({1}) : std::vector<int>({2}); // points on nIn/nOut axis
xSet = new ResultSet(x->allTensorsAlongDimension(dims)); // sub-arrays with shape [nIn]
dLdxSet = new ResultSet(dLdx->allTensorsAlongDimension(dims)); // sub-arrays with shape [nIn]
hSet = new ResultSet(h.allTensorsAlongDimension({2})); // sub-arrays with shape [nOut]
cSet = new ResultSet(c.allTensorsAlongDimension({2})); // sub-arrays with shape [nOut]
zSet = new ResultSet(z.allTensorsAlongDimension({2})); // sub-arrays with shape [4*nOut]
aSet = new ResultSet(a.allTensorsAlongDimension({2})); // sub-arrays with shape [4*nOut]
if(hI)
hISet = new ResultSet(hI->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
if(cI)
cISet = new ResultSet(cI->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
dLdh0Set = new ResultSet(dLdh0->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
dLdc0Set = new ResultSet(dLdc0->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
if(dLdh)
dLdhSet = new ResultSet(dLdh->allTensorsAlongDimension(dims)); // sub-arrays with shape [nOut]
if(dLdhL)
dLdhLSet = new ResultSet(dLdhL->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
if(dLdcL)
dLdcLSet = new ResultSet(dLdcL->allTensorsAlongDimension({1})); // sub-arrays with shape [nOut]
}
// loops
if(forward) {
if(!seqLen) { // seqLen is absent
if(hI)
hSet->at(0)->assign(hI);
else
hSet->at(0)->nullify();
if(cI)
cSet->at(0)->assign(cI);
else
cSet->at(0)->nullify();
// ff
for (int t = 0; t < sL; ++t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, hSet->at(t), cSet->at(t), Wp, params, zSet->at(t), aSet->at(t), hSet->at(t+1), cSet->at(t+1));
// bp
for (int t = sL-1; t >= 0; --t) {
const NDArray* dLdhh = dLdh ? dLdhSet->at(t) : nullptr;
const NDArray* dLdhhL = (t == sL-1 && dLdhL) ? dLdhL : nullptr;
const NDArray* dLdccL = (t == sL-1 && dLdcL) ? dLdcL : nullptr;
lstmLayerCellBp(xSet->at(t), Wx, Wr, b, hSet->at(t), cSet->at(t), Wp, dLdhh, dLdhhL, dLdccL,
zSet->at(t), aSet->at(t), cSet->at(t+1), params, dLdxSet->at(t), dLdWx, dLdWr, dLdh0, dLdc0, dLdb, dLdWp);
}
}
else { // seqLen is present
for (int e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*dLdx, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
continue;
}
if(hI)
hSet->at(e)->assign(hISet->at(e));
else
hSet->at(e)->nullify();
if(cI)
cSet->at(e)->assign(cISet->at(e));
else
cSet->at(e)->nullify();
// ff
for (int t = 0; t < limit; ++t)
lstmLayerCell(xSet->at(getBatchTimeTotalIndex(dataFormat, sL, bS, t, e)), Wx, Wr, b, hSet->at(t*bS + e), cSet->at(t*bS + e), Wp, params,
zSet->at(t*bS + e), aSet->at(t*bS + e), hSet->at((t+1)*bS + e), cSet->at((t+1)*bS + e));
// bp
for (int t = limit-1; t >= 0; --t) {
const auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
const NDArray* dLdhh = dLdh ? dLdhSet->at(ind) : nullptr;
const NDArray* dLdhhL = (t == limit-1 && dLdhL) ? dLdhLSet->at(e) : nullptr;
const NDArray* dLdccL = (t == limit-1 && dLdcL) ? dLdcLSet->at(e) : nullptr;
lstmLayerCellBp(xSet->at(ind), Wx, Wr, b, hSet->at(t*bS + e), cSet->at(t*bS + e), Wp, dLdhh, dLdhhL, dLdccL,
zSet->at(t*bS + e), aSet->at(t*bS + e), cSet->at((t+1)*bS + e), params, dLdxSet->at(ind), dLdWx, dLdWr,
dLdh0Set->at(e), dLdc0Set->at(e), dLdb, dLdWp);
}
if(limit != sL)
tensorAlongTimeBatchDims(*dLdx, dataFormat, limit,sL, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
}
else { // backward or bidirectional
if(!seqLen) { // backward or bidirectional, seqLen is absent
if(hI)
hSet->at(sL)->assign(hI);
else
hSet->at(sL)->nullify();
if(cI)
cSet->at(sL)->assign(cI);
else
cSet->at(sL)->nullify();
// ff
for (int t = sL-1; t >= 0; --t)
lstmLayerCell(xSet->at(t), Wx, Wr, b, hSet->at(t+1), cSet->at(t+1), Wp, params, zSet->at(t), aSet->at(t), hSet->at(t), cSet->at(t));
// bp
for (int t = 0; t < sL; ++t) {
const NDArray* dLdhh = dLdh ? dLdhSet->at(t) : nullptr;
const NDArray* dLdhhL = (t == 0 && dLdhL) ? dLdhL : nullptr;
const NDArray* dLdccL = (t == 0 && dLdcL) ? dLdcL : nullptr;
lstmLayerCellBp(xSet->at(t), Wx, Wr, b, hSet->at(t+1), cSet->at(t+1), Wp, dLdhh, dLdhhL, dLdccL,
zSet->at(t), aSet->at(t), cSet->at(t), params, dLdxSet->at(t), dLdWx, dLdWr, dLdh0, dLdc0, dLdb, dLdWp);
}
}
else if(directionMode == 1) { // backward, seqLen is present
for (int e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*dLdx, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
continue;
}
if(hI)
hSet->at(sL*bS + e)->assign(hISet->at(e));
else
hSet->at(sL*bS + e)->nullify();
if(cI)
cSet->at(sL*bS + e)->assign(cISet->at(e));
else
cSet->at(sL*bS + e)->nullify();
// ff
for (int t = sL - 1; t >= sL-limit; --t)
lstmLayerCell(xSet->at(getBatchTimeTotalIndex(dataFormat, sL, bS, t, e)), Wx, Wr, b, hSet->at((t+1)*bS + e), cSet->at((t+1)*bS + e), Wp, params,
zSet->at(t*bS + e), aSet->at(t*bS + e), hSet->at(t*bS + e), cSet->at(t*bS + e));
// bp
for (int t = sL-limit; t < sL; ++t) {
const auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
const NDArray* dLdhh = dLdh ? dLdhSet->at(ind) : nullptr;
const NDArray* dLdhhL = (t == sL-limit && dLdhL) ? dLdhLSet->at(e) : nullptr;
const NDArray* dLdccL = (t == sL-limit && dLdcL) ? dLdcLSet->at(e) : nullptr;
lstmLayerCellBp(xSet->at(ind), Wx, Wr, b, hSet->at((t+1)*bS + e), cSet->at((t+1)*bS + e), Wp, dLdhh, dLdhhL, dLdccL,
zSet->at(t*bS + e), aSet->at(t*bS + e), cSet->at(t*bS + e), params, dLdxSet->at(ind), dLdWx, dLdWr,
dLdh0Set->at(e), dLdc0Set->at(e), dLdb, dLdWp);
}
if(limit != sL)
tensorAlongTimeBatchDims(*dLdx, dataFormat, 0,sL-limit, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
else { // bidirectional mode, seqLen is present
for (int e = 0; e < bS; ++e) {
const int limit = seqLen->e<int>(e);
if(limit == 0) {
tensorAlongTimeBatchDims(*dLdx, dataFormat, 0,0, e,e+1).nullify(); // nullify for given e and whole time range
continue;
}
if(hI)
h({limit,limit+1, e,e+1, 0,0}).assign(hISet->at(e));
else
h({limit,limit+1, e,e+1, 0,0}).nullify();
if(cI)
c({limit,limit+1, e,e+1, 0,0}).assign(cISet->at(e));
else
c({limit,limit+1, e,e+1, 0,0}).nullify();
// ff
for (int t = limit - 1; t >= 0; --t)
lstmLayerCell(xSet->at(getBatchTimeTotalIndex(dataFormat, sL, bS, t, e)), Wx, Wr, b, hSet->at((t+1)*bS + e), cSet->at((t+1)*bS + e), Wp, params,
zSet->at(t*bS + e), aSet->at(t*bS + e), hSet->at(t*bS + e), cSet->at(t*bS + e));
// bp
for (int t = 0; t < limit; ++t) {
const auto ind = getBatchTimeTotalIndex(dataFormat, sL, bS, t, e);
const NDArray* dLdhh = dLdh ? dLdhSet->at(ind) : nullptr;
const NDArray* dLdhhL = (t == 0 && dLdhL) ? dLdhLSet->at(e) : nullptr;
const NDArray* dLdccL = (t == 0 && dLdcL) ? dLdcLSet->at(e) : nullptr;
lstmLayerCellBp(xSet->at(ind), Wx, Wr, b, hSet->at((t+1)*bS + e), cSet->at((t+1)*bS + e), Wp, dLdhh, dLdhhL, dLdccL,
zSet->at(t*bS + e), aSet->at(t*bS + e), cSet->at(t*bS + e), params, dLdxSet->at(ind), dLdWx, dLdWr,
dLdh0Set->at(e), dLdc0Set->at(e), dLdb, dLdWp);
}
if(limit != sL)
tensorAlongTimeBatchDims(*dLdx, dataFormat, limit,sL, e,e+1).nullify(); // nullify for given e and time range [limit, sL)
}
}
}
delete xSet; delete dLdxSet; delete hSet; delete cSet; delete aSet; delete zSet;
delete dLdhSet; delete dLdh0Set; delete dLdc0Set; delete dLdhLSet; delete dLdcLSet; delete hISet; delete cISet;
if(!hI)
delete dLdh0;
if(!cI)
delete dLdc0;
}
}
}
}
//////////////////////////////////////////////////////////////////////////
// void lstmLayerCellBp(const NDArray* x, const NDArray* Wx, const NDArray* Wr,
// const NDArray* b, NDArray* hI, NDArray* cI, const NDArray* Wp, const NDArray* dLdh,
// const std::vector<float>& params, const bool firstIter,
// NDArray* dhIdcI, NDArray* dhIdWx, NDArray* dcIdWx, NDArray* dhIdWr, NDArray* dcIdWr,
// NDArray* dhIdb, NDArray* dcIdb, NDArray* dhIdWp, NDArray* dcIdWp,
// NDArray* dLdx, NDArray* dLdWx, NDArray* dLdWr, NDArray* dLdhI, NDArray* dLdcI, NDArray* dLdb, NDArray* dLdWp) {
// /************************ THIS IS NOT OPTIMAZED CODE ***********************************/
// /** the objective is to provide math-readable code **/
// // equations (no peephole connections)
// // zi = x × Wxi + hI × Wri + bi
// // zf = x × Wxf + hI × Wrf + bf
// // zg = x × Wxg + hI × Wrg + bg
// // zo = x × Wxo + hI × Wro + bo
// // i = act(zi)
// // f = act(zf)
// // g = actC(zg)
// // o = act(zo)
// // c = clip(f * cI + i * g)
// // h = o * actH(c)
// // equations (peephole connections are present)
// // zi = x × Wxi + hI × Wri + cI * Wpi + bi
// // zf = x × Wxf + hI × Wrf + cI * Wpf + bf
// // zg = x × Wxg + hI × Wrg + bg
// // zo = x × Wxo + hI × Wro + c * Wpo + bo
// // i = act(zi)
// // f = act(zf)
// // g = actC(zg)
// // o = act(zo)
// // c = clip(f * cI + i * g)
// // h = o * actH(c)
// // IDs for activations: 0=tanh, 1=relu, 2=sigmoid, 3=affine, 4=leaky relu, 5= thresholded relu, 6=scaled tanh, 7=hard sigmoid, 8=ELU, 9=softsign, 10=softplus
// // params[0] - dataFormat, ignore
// // params[1] - directionMode, ignore
// // params[2] - cell clipping value, if it = 0 then do not apply clipping
// // params[3] - activation ID for input (i), forget (f) and output (o) gates
// // params[4] - alpha value for gates activation
// // params[5] - beta value for gates activation
// // params[6] - activation ID for cell state (c)
// // params[7] - alpha value for cell state activation
// // params[8] - beta value for cell state activation
// // params[9] - activation ID for output (h)
// // params[10] - alpha value for output activation
// // params[11] - beta value for output activation
// // INPUTS:
// // x - current input at time t, [bS, nIn] or [nIn] if seqLen != nullptr
// // Wx - input weights [nIn, 4*nOut]
// // Wr - recurrent weights [nOut, 4*nOut]
// // b - biases [4*nOut], optional, may be nullptr
// // hI - (ht-1) previous (initial) output at time t-1, [bS, nOut] or [nOut] if seqLen != nullptr
// // cI - (ct-1) previous (initial) cell state at time t-1, [bS, nOut] or [nOut] if seqLen != nullptr
// // Wp - peephole weights [3*nOut], optional, may be nullptr
// // dLdh - loss derivative with respect to h, [bS, nOut] or [nOut] if seqLen != nullptr
// // dhIdcI - derivative from previous time step, [bS, nOut] or [nOut] if seqLen != nullptr
// // dhIdWx - derivative from previous time step (Jacobian), [nIn, 4*nOut, bS, nOut] or [nIn, 4*nOut, nOut] if seqLen != nullptr
// // dcIdWx - derivative from previous time step (Jacobian), [nIn, 4*nOut, bS, nOut] or [nIn, 4*nOut, nOut] if seqLen != nullptr
// // dhIdWr - derivative from previous time step (Jacobian), [nOut, 4*nOut, bS, nOut] or [nOut, 4*nOut, nOut] if seqLen != nullptr
// // dcIdWr - derivative from previous time step (Jacobian), [nOut, 4*nOut, bS, nOut] or [nOut, 4*nOut, nOut] if seqLen != nullptr
// // dcIdWp - derivative from previous time step, [3*nOut], optional, may be nullptr
// // dhIdWp - derivative from previous time step, [3*nOut], optional, may be nullptr
// // dcIdb - derivative from previous time step, [4*nOut], optional, may be nullptr
// // dhIdb - derivative from previous time step, [4*nOut], optional, may be nullptr
// // OUTPUTS:
// // dLdx - loss derivative with respect to x, [bS, nIn] or [nIn] if seqLen != nullptr
// // dLdWx - loss derivative with respect to Wx, [nIn, 4*nOut]
// // dLdWr - loss derivative with respect to Wr, [nOut, 4*nOut]
// // dLdb - loss derivative with respect to b, optional, may be nullptr, [4*nOut]
// // dLdhI - loss derivative with respect to hI, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// // dLdcI - loss derivative with respect to cI, optional may be nullptr, [bS, nOut] or [nOut] if seqLen != nullptr
// // dLdWp - loss derivative with respect to Wp, optional, may be nullptr, [3*nOut]
// // !!! dimension 4*nOut implies order i, f, g, o
// // !!! dimension 3*nOut implies order i, f, o
// // dcdzi = dcdi*didzi
// // dcdzf = dcdf*dfdzf
// // dcdzg = dcdg*dgdzg
// // dhdzo = dhdo*dodzo
// // dhdc = dhdc + Wp ? dhdzo*dzodc : 0 [bS, nOut]
// // factor = dLdh*dhdc [bS, nOut]
// // iFactor = factor*dcdzi [bS, nOut]
// // fFactor = factor*dcdzf [bS, nOut]
// // eFactor = factor*dcdzg [bS, nOut]
// // oFactor = *dLdh*dhdzo [bS, nOut]
// // tempC = dcdcI + Wp ? dcdzi*dzidcI + dcdzf*dzfdcI : 0;
// // tempIFE = dcdzi×WriT + dcdzf×WrfT + dcdzg×WrgT
// // tempO = dhdzo×WroT
// // dhIdcI = dhdc_from_previous_time_step
// // dLdx = iFactor×WxiT + fFactor×WxfT + eFactor×WxgT + oFactor×WxoT, [bS, nIn]
// // dLdhI = iFactor×WriT + fFactor×WrfT + eFactor×WrgT + oFactor×WroT, [bS, nOut]
// // dLdcI = factor*tempC + dLdhI * dhIdcI, dhIdcI=0 if firstIter, [bS, nOut]
// // dcdWxi(dcIdWxi) = dcdzi*dzidWxi + tempIFE*dhIdWxi + tempC*dcIdWxi, dcIdWxi=dhIdWxi= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dcdWxf(dcIdWxf) = dcdzf*dzfdWxf + tempIFE*dhIdWxf + tempC*dcIdWxf, dcIdWxf=dhIdWxf= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dcdWxg(dcIdWxg) = dcdzg*dzgdWxg + tempIFE*dhIdWxg + tempC*dcIdWxg, dcIdWxg=dhIdWxg= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dcdWxo(dcIdWxo) = 0 + tempIFE*dhIdWxo + tempC*dcIdWxo; dcIdWxo=dhIdWxo= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dhdWxi(dhIdWxi) = 0 + dhdc*dcdWxi + tempO*dhIdWxi, dhIdWxi= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dhdWxf(dhIdWxf) = 0 + dhdc*dcdWxf + tempO*dhIdWxf, dhIdWxf= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dhdWxg(dhIdWxg) = 0 + dhdc*dcdWxg + tempO*dhIdWxg, dhIdWxg= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dhdWxo(dhIdWxo) = dhdzo*dzodWxo + dhdc*dcdWxo + tempO*dhIdWxo, dhIdWxo= 0 if firstIter, [nIn, nOut, bS, nOut]
// // dhdWri(dhIdWri) = 0 + dhdc*dcdWri + tempO*dhIdWri, dhIdWri= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dhdWrf(dhIdWrf) = 0 + dhdc*dcdWrf + tempO*dhIdWrf, dhIdWrf= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dhdWrg(dhIdWrg) = 0 + dhdc*dcdWrg + tempO*dhIdWrg, dhIdWrg= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dhdWro(dhIdWro) = dhdzo*dzodWro + dhdc*dcdWro + tempO*dhIdWro, dhIdWro= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dcdWri(dcIdWri) = dcdzi*dzidWri + tempIFE*dhIdWri + tempC*dcIdWri, dcIdWri=dhIdWri= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dcdWrf(dcIdWrf) = dcdzf*dzfdWrf + tempIFE*dhIdWrf + tempC*dcIdWrf, dcIdWri=dhIdWri= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dcdWrg(dcIdWrg) = dcdzg*dzgdWrg + tempIFE*dhIdWrg + tempC*dcIdWrg, dcIdWri=dhIdWri= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dcdWro(dcIdWro) = 0 + tempIFE*dhIdWro + tempC*dcIdWro; dcIdWro=dhIdWro= 0 if firstIter, [nOut, nOut, bS, nOut]
// // dcIdWpi = (dcdzi*cI + tempIFE*dhIdWpi + tempC*dcIdWpi).reduceALongFirstDim, dcIdWpi=dhIdWpi= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcIdWpf = (dcdzf*cI + tempIFE*dhIdWpf + tempC*dcIdWpf).reduceALongFirstDim, dcIdWpf=dhIdWpf= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcIdWpo = (0 + tempIFE*dhIdWpo + tempC*dcIdWpo).reduceALongFirstDim, dcIdWpo=dhIdWpo= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdWpi(dhIdWpi) =( 0 + dhdc*dcdWpi + tempO*dhIdWpi).reduceALongFirstDim, dhIdWpi= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdWpf(dhIdWpf) =( 0 + dhdc*dcdWpf + tempO*dhIdWpf).reduceALongFirstDim, dhIdWpf= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdWpo(dhIdWpo) =(dhdzo*c + dhdc*dcdWpo + tempO*dhIdWpo).reduceALongFirstDim, dhIdWpo= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcdbi(dcIdbi) = (dcdzi + tempIFE*dhIdbi + tempC*dcIdbi).reduceALongFirstDim, dcIdbi=dhIdbi= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcdbf(dcIdbf) = (dcdzf + tempIFE*dhIdbf + tempC*dcIdbf).reduceALongFirstDim, dcIdbf=dhIdbf= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcdbg(dcIdbg) = (dcdzg + tempIFE*dhIdbg + tempC*dcIdbg).reduceALongFirstDim, dcIdbg=dhIdbg= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dcdbo(dcIdbo) = ( 0 + tempIFE*dhIdbo + tempC*dcIdbo).reduceALongFirstDim; dcIdbo=dhIdbo= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdbi(dhIdbi) = ( 0 + dhdc*dcdbi + tempO*dhIdbi).reduceALongFirstDim, dhIdbi= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdbf(dhIdbf) = ( 0 + dhdc*dcdbf + tempO*dhIdbf).reduceALongFirstDim, dhIdbf= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdbg(dhIdbg) = ( 0 + dhdc*dcdbg + tempO*dhIdbg).reduceALongFirstDim, dhIdbg= 0 if firstIter, [bS, nOut]->reduce->[bS]
// // dhdbo(dhIdbo) = (dhdzo + dhdc*dcdbo + tempO*dhIdbo).reduceALongFirstDim, dhIdbo= 0 if firstIter, [bS, nOut]->reduce->[bS]
// const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
// NDArray *Wpi(nullptr), *Wpf(nullptr), *Wpo(nullptr), *dcIdWpi(nullptr), *dcIdWpf(nullptr), *dcIdWpo(nullptr), *dhIdWpi(nullptr), *dhIdWpf(nullptr), *dhIdWpo(nullptr);
// if(Wp) {
// Wpi = new NDArray((*Wp)({0, nOut}));
// Wpf = new NDArray((*Wp)({nOut, 2*nOut}));
// Wpo = new NDArray((*Wp)({2*nOut, 3*nOut}));
// dhIdWpi = new NDArray((*dhIdWp)({0, nOut}));
// dhIdWpf = new NDArray((*dhIdWp)({nOut, 2*nOut}));
// dhIdWpo = new NDArray((*dhIdWp)({2*nOut, 3*nOut}));
// dcIdWpi = new NDArray((*dcIdWp)({0, nOut}));
// dcIdWpf = new NDArray((*dcIdWp)({nOut, 2*nOut}));
// dcIdWpo = new NDArray((*dcIdWp)({2*nOut, 3*nOut}));
// }
// NDArray *dcIdbi(nullptr), *dcIdbf(nullptr), *dcIdbg(nullptr), *dcIdbo(nullptr), *dhIdbi(nullptr), *dhIdbf(nullptr), *dhIdbg(nullptr), *dhIdbo(nullptr);
// if(b) {
// dhIdbi = new NDArray((*dhIdb)({0, nOut}));
// dhIdbf = new NDArray((*dhIdb)({nOut, 2*nOut}));
// dhIdbg = new NDArray((*dhIdb)({2*nOut, 3*nOut}));
// dhIdbo = new NDArray((*dhIdb)({3*nOut, 4*nOut}));
// dcIdbi = new NDArray((*dcIdb)({0, nOut}));
// dcIdbf = new NDArray((*dcIdb)({nOut, 2*nOut}));
// dcIdbg = new NDArray((*dcIdb)({2*nOut, 3*nOut}));
// dcIdbo = new NDArray((*dcIdb)({3*nOut, 4*nOut}));
// }
// NDArray dhIdWxi = x->rankOf() == 1 ? (*dhIdWx)({0,0, 0,nOut, 0,0}) : (*dhIdWx)({0,0, 0,nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWxf = x->rankOf() == 1 ? (*dhIdWx)({0,0, nOut,2*nOut, 0,0}) : (*dhIdWx)({0,0, nOut,2*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWxg = x->rankOf() == 1 ? (*dhIdWx)({0,0, 2*nOut,3*nOut, 0,0}) : (*dhIdWx)({0,0, 2*nOut,3*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWxo = x->rankOf() == 1 ? (*dhIdWx)({0,0, 3*nOut,4*nOut, 0,0}) : (*dhIdWx)({0,0, 3*nOut,4*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWri = x->rankOf() == 1 ? (*dhIdWr)({0,0, 0,nOut, 0,0}) : (*dhIdWr)({0,0, 0,nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWrf = x->rankOf() == 1 ? (*dhIdWr)({0,0, nOut,2*nOut, 0,0}) : (*dhIdWr)({0,0, nOut,2*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWrg = x->rankOf() == 1 ? (*dhIdWr)({0,0, 2*nOut,3*nOut, 0,0}) : (*dhIdWr)({0,0, 2*nOut,3*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dhIdWro = x->rankOf() == 1 ? (*dhIdWr)({0,0, 3*nOut,4*nOut, 0,0}) : (*dhIdWr)({0,0, 3*nOut,4*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWxi = x->rankOf() == 1 ? (*dcIdWx)({0,0, 0,nOut, 0,0}) : (*dcIdWx)({0,0, 0,nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWxf = x->rankOf() == 1 ? (*dcIdWx)({0,0, nOut,2*nOut, 0,0}) : (*dcIdWx)({0,0, nOut,2*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWxg = x->rankOf() == 1 ? (*dcIdWx)({0,0, 2*nOut,3*nOut, 0,0}) : (*dcIdWx)({0,0, 2*nOut,3*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWxo = x->rankOf() == 1 ? (*dcIdWx)({0,0, 3*nOut,4*nOut, 0,0}) : (*dcIdWx)({0,0, 3*nOut,4*nOut, 0,0, 0,0}); // [nIn, nOut, bS, nOut] or [nIn, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWri = x->rankOf() == 1 ? (*dcIdWr)({0,0, 0,nOut, 0,0}) : (*dcIdWr)({0,0, 0,nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWrf = x->rankOf() == 1 ? (*dcIdWr)({0,0, nOut,2*nOut, 0,0}) : (*dcIdWr)({0,0, nOut,2*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWrg = x->rankOf() == 1 ? (*dcIdWr)({0,0, 2*nOut,3*nOut, 0,0}) : (*dcIdWr)({0,0, 2*nOut,3*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray dcIdWro = x->rankOf() == 1 ? (*dcIdWr)({0,0, 3*nOut,4*nOut, 0,0}) : (*dcIdWr)({0,0, 3*nOut,4*nOut, 0,0, 0,0}); // [nOut, nOut, bS, nOut] or [nOut, nOut, nOut] if seqLen != nullptr
// NDArray WxiT = (*Wx)({0,0, 0, nOut}).transpose(); // [nOut, nIn]
// NDArray WxfT = (*Wx)({0,0, nOut, 2*nOut}).transpose(); // [nOut, nIn]
// NDArray WxgT = (*Wx)({0,0, 2*nOut,3*nOut}).transpose(); // [nOut, nIn]
// NDArray WxoT = (*Wx)({0,0, 3*nOut,4*nOut}).transpose(); // [nOut, nIn]
// NDArray WriT = (*Wr)({0,0, 0, nOut}).transpose(); // [nOut, nOut]
// NDArray WrfT = (*Wr)({0,0, nOut, 2*nOut}).transpose(); // [nOut, nOut]
// NDArray WrgT = (*Wr)({0,0, 2*nOut,3*nOut}).transpose(); // [nOut, nOut]
// NDArray WroT = (*Wr)({0,0, 3*nOut,4*nOut}).transpose(); // [nOut, nOut]
// // ***** feed forward step ***** //
// auto z = mmul(*x, *Wx) + mmul(*hI, *Wr); // [bs, nIn] * [nIn, 4*nOut] + [bs, nOut] * [nOut, 4*nOut] = [bS, 4*nOut]
// //or [nIn] * [nIn, 4*nOut] + [nOut] * [nOut, 4*nOut] = [4*nOut]
// // add biases if they are given
// if(b)
// z += *b; // broadcast [bS, 4*nOut] + [4*nOut] = [bS, 4*nOut](or[4*nOut])
// auto zi = x->rankOf() == 1 ? z({0, nOut}) : z({0,0, 0, nOut}); // input gate i, [bS, nOut](or[nOut])
// auto zf = x->rankOf() == 1 ? z({nOut, 2*nOut}) : z({0,0, nOut, 2*nOut}); // forget gate f, [bS, nOut](or[nOut])
// auto zg = x->rankOf() == 1 ? z({2*nOut, 3*nOut}) : z({0,0, 2*nOut, 3*nOut}); // cell gate g, [bS, nOut](or[nOut])
// auto zo = x->rankOf() == 1 ? z({3*nOut, 4*nOut}) : z({0,0, 3*nOut, 4*nOut}); // output gate o, [bS, nOut](or[nOut])
// // peephole connections for input and forget gates
// if(Wp) {
// zi += *cI * *Wpi; // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
// zf += *cI * *Wpf; // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
// }
// NDArray i = zi.ulike(); // [bS, nOut]
// NDArray f = zf.ulike(); // [bS, nOut]
// NDArray g = zg.ulike(); // [bS, nOut]
// applyActivation(zi, params[3], params[4], params[5], i);
// applyActivation(zf, params[3], params[4], params[5], f);
// applyActivation(zg, params[6], params[7], params[8], g);
// NDArray c = f * *cI + i * g; // [bS, nOut] * [bS, nOut] + [bS, nOut] * [bS, nOut] = [bS, nOut](or[nOut])
// // if clipping value is non-zero then cell state is clipped by this value prior to the cell output activation
// if(params[2] != 0)
// c.applyScalar(scalar::LstmClip, params[2], c);
// // peephole connections for output gate
// if(Wp)
// zo += c * *Wpo; // broadcast: [bS, nOut] + [bS, nOut] * [nOut] = [bS, nOut](or[nOut])
// NDArray o = zo.ulike(); // [bS, nOut](or[nOut])
// applyActivation(zo, params[3], params[4], params[5], o);
// // ***** back prop step ***** //
// NDArray dWxJacobian = mmulJacobianWeightsDeriv(nOut, *x); // [nIn, nOut, bS, nOut] (or [nIn, nOut, nOut])
// NDArray dWrJacobian = mmulJacobianWeightsDeriv(nOut, *hI); // [nOut, nOut, bS, nOut] (or [nOut, nOut, nOut])
// // dodzo
// NDArray dodzo = zo.ulike(); // [bS, nOut](or[nOut])
// activationDeriv(zo, params[3], params[4], params[5], dodzo);
// // dhdzo = dhdo*dodzo = actH(c)*dodzo
// NDArray dhdzo = zo.ulike(); // [bS, nOut](or[nOut])
// applyActivation(c, params[9], params[10], params[11], dhdzo); // actH(c)
// hI->assign(o*dhdzo);
// dhdzo *= dodzo;
// // dcdzi = dcdi*didzi
// NDArray dcdzi = zi.ulike(); // [bS, nOut](or[nOut])
// activationDeriv(zi, params[3], params[4], params[5], dcdzi); // didzi
// dcdzi *= g; // dcdi = g*clipDeriv
// // dcdzf = dcdf*dfdzf
// NDArray dcdzf = zf.ulike(); // [bS, nOut](or[nOut])
// activationDeriv(zf, params[3], params[4], params[5], dcdzf); // dfdzf
// dcdzf *= *cI; // dcdf = cI*clipDeriv
// // dcdzg = dcde*dedzg
// NDArray dcdzg = zg.ulike(); // [bS, nOut](or[nOut])
// activationDeriv(zg, params[6], params[7], params[8], dcdzg); // dedzg
// dcdzg *= i; // dcdf = i*clipDeriv
// // dcdcI
// NDArray dcdcI = f.dup(); // [bS, nOut](or[nOut])
// // take into account possible deposit from clipping derivative
// clipDeriv(params[2], c, dcdzi, dcdzf, dcdzg, dcdcI);
// // dzodc
// NDArray* dzodc = Wpo; // [nOut], should be [bS, nOut] actually, however it will be broadcasted appropriately in future calcus (element-wise multiplication)
// // dzidcI
// NDArray* dzidcI = Wpi; // [nOut], should be [bS, nOut] actually, however it will be broadcasted appropriately in future calcus (element-wise multiplication)
// // dzfdcI
// NDArray* dzfdcI = Wpf; // [nOut], should be [bS, nOut] actually, however it will be broadcasted appropriately in future calcus (element-wise multiplication)
// // dhdc
// NDArray dhdc = c.ulike();
// activationDeriv(c, params[9], params[10], params[11], dhdc); // [bS, nOut]
// dhdc *= o;
// if(Wp)
// dhdc += dhdzo* *dzodc;
// NDArray factor = *dLdh * dhdc;
// NDArray iFactor = factor*dcdzi; // [bS, nOut](or[nOut])
// NDArray fFactor = factor*dcdzf; // [bS, nOut](or[nOut])
// NDArray eFactor = factor*dcdzg; // [bS, nOut](or[nOut])
// NDArray oFactor = *dLdh *dhdzo; // [bS, nOut](or[nOut])
// NDArray tempC = dcdcI;
// if(Wp)
// tempC += dcdzi*(*dzidcI) + dcdzf*(*dzfdcI);
// // dLdx
// dLdx->assign(mmul(iFactor, WxiT) + mmul(fFactor, WxfT) + mmul(eFactor, WxgT) + mmul(oFactor, WxoT)); // [bS, nIn](or[nOut])
// // NDArray temp = c.ulike();
// // applyActivation(c, params[9], params[10], params[11], temp); // actH(c)
// // dLdx->assign(mmul(o*(1-temp*temp)*g*i*(1-i), WxiT) + mmul(o*(1-temp*temp)*(*cI)*f*(1-f), WxfT) + mmul(o*(1-temp*temp)*i*g*(1-g), WxgT) + mmul(temp*o*(1-o), WxoT)); // [bS, nIn](or[nOut])
// // dLdhI
// NDArray* dLdhII = dLdhI;
// if(dLdcI && !dLdhI)
// dLdhII = new NDArray(dLdcI->ulike());
// dLdhII->assign(mmul(iFactor, WriT) + mmul(fFactor, WrfT) + mmul(eFactor, WrgT) + mmul(oFactor, WroT)); // [bS, nOut](or[nOut])
// if(firstIter) {
// // dLdcI
// if(dLdcI)
// dLdcI->assign(factor*tempC); // [bS, nOut](or[nOut])
// // dcIdWxi(dcdWxi)
// dcIdWxi.assign(dcdzi*dWxJacobian); // broadcast [bS, nOut] * [nIn, nOut, bS, nOut] (or [nOut] * [nIn, nOut, nOut]);
// // dcIdWxf(dcdWxf)
// dcIdWxf.assign(dcdzf*dWxJacobian);
// // dcIdWxg(dcdWxg)
// dcIdWxg.assign(dcdzg*dWxJacobian);
// // dcIdWxo(dcdWxo) = 0
// dcIdWxo.nullify();
// // dhIdWxi
// dhIdWxi.assign(dhdc*dcIdWxi); // broadcast [bS, nOut] * [nIn, nOut, bS, nOut] (or [nOut] * [nIn, nOut, nOut]);
// // dhIdWxf
// dhIdWxf.assign(dhdc*dcIdWxf);
// // dhIdWxg
// dhIdWxg.assign(dhdc*dcIdWxg);
// // dhIdWxo
// dhIdWxo.assign(dhdzo*dWxJacobian /*+ 0 */);
// // dcIdWri(dcdWri)
// dcIdWri.assign(dcdzi*dWrJacobian); // broadcast [bS, nOut] * [nOut, nOut, bS, nOut](or [nOut] * [nIn, nOut, nOut]);;
// // dcIdWrf(dcdWrf)
// dcIdWrf.assign(dcdzf*dWrJacobian);
// // dcIdWrg(dcdWrg)
// dcIdWrg.assign(dcdzg*dWrJacobian);
// // dcIdWro(dcdWro) = 0
// dcIdWro.nullify();
// // dhIdWri
// dhIdWri.assign(dhdc*dcIdWri); // broadcast [bS, nOut] * [nIn, nOut, bS, nOut] (or [nOut] * [nIn, nOut, nOut]);
// // dhIdWrf
// dhIdWrf.assign(dhdc*dcIdWrf);
// // dhIdWrg
// dhIdWrg.assign(dhdc*dcIdWrg);
// // dhIdWro
// dhIdWro.assign(dhdzo*dWrJacobian /*+ 0 */);
// if(Wp && x->rankOf() == 1) {
// // dcIdWpi
// dcIdWpi->assign(dcdzi*(*cI)); // [nOut] * [nOut]
// // dcIdWpf
// dcIdWpf->assign(dcdzf*(*cI)); // [nOut] * [nOut]
// // dcIdWpo
// dcIdWpo->nullify(); // [nOut]
// // dhdWpi
// dhIdWpi->assign(dhdc*(*dcIdWpi)); // [nOut] * [nOut]
// // dhdWpf
// dhIdWpf->assign(dhdc*(*dcIdWpf)); // [nOut] * [nOut]
// // dhdWpo
// dhIdWpo->assign(dhdzo*c /* +0*/); // [nOut] * [nOut]
// }
// else if(Wp) {
// // dcIdWpi
// (dcdzi*(*cI)).reduceAlongDimension(reduce::Sum, *dcIdWpi, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdWpf
// (dcdzf*(*cI)).reduceAlongDimension(reduce::Sum, *dcIdWpf, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdWpo
// dcIdWpo->nullify(); // [nOut]
// // dhIdWpi
// (*dLdh*dhdc*(dcdzi*(*cI))).reduceAlongDimension(reduce::Sum, *dhIdWpi, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpf
// (*dLdh*dhdc*(dcdzf*(*cI))).reduceAlongDimension(reduce::Sum, *dhIdWpf, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpo
// (*dLdh*dhdzo*c /* +0*/).reduceAlongDimension(reduce::Sum, *dhIdWpo, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// }
// if(b && x->rankOf() == 1) {
// // dcIdbi
// dcIdbi->assign(dcdzi); // [nOut]
// // dcIdbf
// dcIdbf->assign(dcdzf); // [nOut]
// // dcIdbg
// dcIdbg->assign(dcdzg); // [nOut]
// // dcIdbo
// dcIdbo->nullify(); // [nOut]
// //dhIdbi
// dhIdbi->assign(dhdc*(*dcIdbi)); // [nOut]
// //dhIdbf
// dhIdbf->assign(dhdc*(*dcIdbf)); // [nOut]
// //dhIdbg
// dhIdbg->assign(dhdc*(*dcIdbg)); // [nOut]
// //dhIdbo
// dhIdbo->assign(dhdzo); // [nOut]
// }
// else if(b) {
// // dcIdbi
// dcdzi.reduceAlongDimension(reduce::Sum, *dcIdbi, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbf
// dcdzf.reduceAlongDimension(reduce::Sum, *dcIdbf, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbg
// dcdzg.reduceAlongDimension(reduce::Sum, *dcIdbg, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbo
// dcIdbo->nullify(); // [nOut]
// //dhIdbi
// (*dLdh*dhdc*dcdzi).reduceAlongDimension(reduce::Sum, *dhIdbi, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbf
// (*dLdh*dhdc*dcdzf).reduceAlongDimension(reduce::Sum, *dhIdbf, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbg
// (*dLdh*dhdc*(*dcIdbg)).reduceAlongDimension(reduce::Sum, *dhIdbg, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbo
// (*dLdh*dhdzo).reduceAlongDimension(reduce::Sum, *dhIdbo, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// }
// }
// else {
// NDArray tempIFE = mmul(dcdzi, WriT) + mmul(dcdzf, WrfT) + mmul(dcdzg, WrgT);
// NDArray tempO = mmul(dhdzo, WroT);
// // dLdcI
// if(dLdcI)
// dLdcI->assign(factor*tempC + (*dLdhII)*(*dhIdcI));
// // dcIdWxi(dcdWxi)
// dcIdWxi.assign(dcdzi*dWxJacobian + tempIFE*dhIdWxi + tempC*dcIdWxi); // broadcast [bS, nOut] * [nIn, nOut, bS, nOut](or [nOut] * [nIn, nOut, nOut]);
// // dcIdWxf(dcdWxf)
// dcIdWxf.assign(dcdzf*dWxJacobian + tempIFE*dhIdWxf + tempC*dcIdWxf);
// // dcIdWxg(dcdWxg)
// dcIdWxg.assign(dcdzg*dWxJacobian + tempIFE*dhIdWxg + tempC*dcIdWxg);
// // dcIdWxo(dcdWxo)
// dcIdWxo.assign(/* 0 + */tempIFE * dhIdWxo + tempC*dcIdWxo);
// // dhIdWxi
// dhIdWxi.assign(dhdc*dcIdWxi + tempO*dhIdWxi); // broadcast [bS, nOut] * [nIn, nOut, bS, nOut](or [nOut] * [nIn, nOut, nOut]);
// // dhIdWxf
// dhIdWxf.assign(dhdc*dcIdWxf + tempO*dhIdWxf);
// // dhIdWxg
// dhIdWxg.assign(dhdc*dcIdWxg + tempO*dhIdWxg);
// // dhIdWxo
// dhIdWxo.assign(dhdzo*dWxJacobian + dhdc*dcIdWxo + tempO*dhIdWxo);
// // dcIdWri(dcdWri)
// dcIdWri.assign(dcdzi*dWrJacobian + tempIFE*dhIdWri + tempC*dcIdWri); // broadcast [bS, nOut] * [nOut, nOut, bS, nOut](or [nOut] * [nIn, nOut, nOut]);
// // dcIdWrf(dcdWrf)
// dcIdWrf.assign(dcdzf*dWrJacobian + tempIFE*dhIdWrf + tempC*dcIdWrf);
// // dcIdWrg(dcdWrg)
// dcIdWrg.assign(dcdzg*dWrJacobian + tempIFE*dhIdWrg + tempC*dcIdWrg);
// // dcIdWro(dcdWro)
// dcIdWro.assign(/* 0 + */tempIFE * dhIdWro + tempC*dcIdWro);
// // dhIdWri
// dhIdWri.assign(dhdc*dcIdWri + tempO*dhIdWri); // broadcast [bS, nOut] * [nOut, nOut, bS, nOut](or [nOut] * [nIn, nOut, nOut]);
// // dhIdWrf
// dhIdWrf.assign(dhdc*dcIdWrf + tempO*dhIdWrf);
// // dhIdWrg
// dhIdWrg.assign(dhdc*dcIdWrg + tempO*dhIdWrg);
// // dhIdWro
// dhIdWro.assign(dhdzo*dWrJacobian + dhdc*dcIdWro + tempO*dhIdWro);
// if(Wp && x->rankOf() == 1) {
// // dcIdWpi
// dcIdWpi->assign(dcdzi*(*cI) + tempIFE*(*dhIdWpi) + tempC*(*dcIdWpi)); // [nOut] * [nOut]
// // dcIdWpf
// dcIdWpf->assign(dcdzf*(*cI) + tempIFE*(*dhIdWpf) + tempC*(*dcIdWpf)); // [nOut] * [nOut]
// // dcIdWpo
// dcIdWpo->assign(/* 0 + */ tempIFE*(*dhIdWpo) + tempC*(*dcIdWpo)); // [nOut] * [nOut]
// // dhdWpi
// dhIdWpi->assign(dhdc*(*dcIdWpi) + tempO*(*dhIdWpi)); // [nOut] * [nOut]
// // dhdWpf
// dhIdWpf->assign(dhdc*(*dcIdWpf) + tempO*(*dhIdWpf)); // [nOut] * [nOut]
// // dhdWpo
// dhIdWpo->assign(dhdzo*c + dhdc*(*dcIdWpo) + tempO*(*dhIdWpo)); // [nOut] * [nOut]
// }
// else if(Wp) {
// // dcIdWpi
// (dcdzi*(*cI) + tempIFE*(*dhIdWpi) + tempC*(*dcIdWpi)).reduceAlongDimension(reduce::Sum, *dcIdWpi, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dcIdWpf
// (dcdzf*(*cI) + tempIFE*(*dhIdWpf) + tempC*(*dcIdWpf)).reduceAlongDimension(reduce::Sum, *dcIdWpf, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dcIdWpo
// (/* 0 + */ tempIFE*(*dhIdWpo) + tempC*(*dcIdWpo)).reduceAlongDimension(reduce::Sum, *dcIdWpo, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpi
// (dhdc*(*dcIdWpi) + tempO*(*dhIdWpi)).reduceAlongDimension(reduce::Sum, *dhIdWpi, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpf
// (dhdc*(*dcIdWpf) + tempO*(*dhIdWpf)).reduceAlongDimension(reduce::Sum, *dhIdWpf, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpo
// (dhdzo*c + dhdc*(*dcIdWpo) + tempO*(*dhIdWpo)).reduceAlongDimension(reduce::Sum, *dhIdWpo, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// }
// if(b && x->rankOf() == 1) {
// // dcIdbi
// dcIdbi->assign(dcdzi + tempIFE*(*dhIdbi) + tempC*(*dcIdbi)); // [nOut]
// // dcIdbf
// dcIdbf->assign(dcdzf + tempIFE*(*dhIdbf) + tempC*(*dcIdbf)); // [nOut]
// // dcIdbg
// dcIdbg->assign(dcdzg + tempIFE*(*dhIdbg) + tempC*(*dcIdbg)); // [nOut]
// // dcIdbo
// dcIdbo->assign(/*0+*/ tempIFE*(*dhIdbo) + tempC*(*dcIdbo)); // [nOut]
// //dhIdbi
// dhIdbi->assign(dhdc*(*dcIdbi) + tempO*(*dhIdbi)); // [nOut]
// //dhIdbf
// dhIdbf->assign(dhdc*(*dcIdbf) + tempO*(*dhIdbf)); // [nOut]
// //dhIdbg
// dhIdbg->assign(dhdc*(*dcIdbg) + tempO*(*dhIdbg)); // [nOut]
// //dhIdbo
// dhIdbo->assign(dhdzo + dhdc*(*dcIdbo) + tempO*(*dhIdbo)); // [nOut]
// }
// else if(b) {
// // dcIdbi
// (dcdzi + tempIFE*(*dhIdbi) + tempC*(*dcIdbi)).reduceAlongDimension(reduce::Sum, *dcIdbi, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbf
// (dcdzf + tempIFE*(*dhIdbf) + tempC*(*dcIdbf)).reduceAlongDimension(reduce::Sum, *dcIdbf, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbg
// (dcdzg + tempIFE*(*dhIdbg) + tempC*(*dcIdbg)).reduceAlongDimension(reduce::Sum, *dcIdbg, {0}); // [bS, nOut]->reduce->[nOut]
// // dcIdbo
// (/*0+*/ tempIFE*(*dhIdbo) + tempC*(*dcIdbo)).reduceAlongDimension(reduce::Sum, *dcIdbo, {0}); // [bS, nOut]->reduce->[nOut]
// //dhIdbi
// (dhdc*(*dcIdbi) + tempO*(*dhIdbi)).reduceAlongDimension(reduce::Sum, *dhIdbi, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbf
// (dhdc*(*dcIdbf) + tempO*(*dhIdbf)).reduceAlongDimension(reduce::Sum, *dhIdbf, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbg
// (dhdc*(*dcIdbg) + tempO*(*dhIdbg)).reduceAlongDimension(reduce::Sum, *dhIdbg, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// //dhIdbo
// (dhdzo + dhdc*(*dcIdbo) + tempO*(*dhIdbo)).reduceAlongDimension(reduce::Sum, *dhIdbo, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// }
// }
// const std::vector<int> dimsToExclude = x->rankOf() == 1 ? std::vector<int>({2}) : std::vector<int>({2, 3});
// // dLdWxi, dLdWxf, dLdWxg, dLdWxo
// (*dLdh*(*dhIdWx)).reduceAlongDimension(reduce::Sum, *dLdWx, dimsToExclude);
// // dLdWri, dLdWrf, dLdWrg, dLdWro
// (*dLdh*(*dhIdWr)).reduceAlongDimension(reduce::Sum, *dLdWr, dimsToExclude);
// // dLdWpi, dLdWpf, dLdWpo
// if(Wp) {
// if(x->rankOf() == 1) {
// (*dLdWp)({0, nOut}).assign(*dLdh*(*dhIdWpi)); // [nOut] * [nOut]
// (*dLdWp)({nOut, 2*nOut}).assign(*dLdh*(*dhIdWpf)); // [nOut] * [nOut]
// (*dLdWp)({2*nOut, 3*nOut}).assign(*dLdh*(*dhIdWpo)); // [nOut] * [nOut]
// }
// else {
// // NDArray temp1 = (*dLdWp)({0, nOut});
// // NDArray temp2 = (*dLdWp)({nOut, 2*nOut});
// // NDArray temp3 = (*dLdWp)({2*nOut, 3*nOut});
// // dhIdWpi->reduceAlongDimension(reduce::Sum, temp1, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpf->reduceAlongDimension(reduce::Sum, temp2, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // dhIdWpo->reduceAlongDimension(reduce::Sum, temp3, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// (*dLdWp)({0, nOut}).assign(dhIdWpi);
// (*dLdWp)({nOut, 2*nOut}).assign(dhIdWpf);
// (*dLdWp)({2*nOut, 3*nOut}).assign(dhIdWpo);
// }
// }
// // dLdbi, dLdbf, dLdbg, dLdbo
// if(b) {
// if(x->rankOf() == 1) {
// (*dLdb)({0, nOut}).assign(*dLdh*(*dhIdbi)); // [nOut] * [nOut]
// (*dLdb)({nOut, 2*nOut}).assign(*dLdh*(*dhIdbf)); // [nOut] * [nOut]
// (*dLdb)({2*nOut, 3*nOut}).assign(*dLdh*(*dhIdbg)); // [nOut] * [nOut]
// (*dLdb)({3*nOut, 4*nOut}).assign(*dLdh*(*dhIdbo)); // [nOut] * [nOut]
// }
// else {
// // NDArray temp1 = (*dLdb)({0, nOut});
// // NDArray temp2 = (*dLdb)({nOut, 2*nOut});
// // NDArray temp3 = (*dLdb)({2*nOut, 3*nOut});
// // NDArray temp4 = (*dLdb)({3*nOut, 4*nOut});
// // (*dLdh*(*dhIdbi)).reduceAlongDimension(reduce::Sum, temp1, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // (*dLdh*(*dhIdbf)).reduceAlongDimension(reduce::Sum, temp2, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // (*dLdh*(*dhIdbg)).reduceAlongDimension(reduce::Sum, temp3, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// // (*dLdh*(*dhIdbo)).reduceAlongDimension(reduce::Sum, temp3, {0}); // ([bS, nOut] * [nOut])->reduce->[nOut]
// (*dLdb)({0, nOut}).assign(dhIdbi);
// (*dLdb)({nOut, 2*nOut}).assign(dhIdbf);
// (*dLdb)({2*nOut, 3*nOut}).assign(dhIdbg);
// (*dLdb)({3*nOut, 4*nOut}).assign(dhIdbo);
// }
// }
// //dhIdcI
// if(dLdcI)
// dhIdcI->assign(dhdc);
// cI->assign(c);
// if(dLdcI && !dLdhI)
// delete dLdhII;
// if(Wp) {
// delete Wpi; delete Wpf; delete Wpo; delete dcIdWpi; delete dcIdWpf; delete dcIdWpo; delete dhIdWpi; delete dhIdWpf; delete dhIdWpo;
// }
// if(b) {
// delete dcIdbi; delete dcIdbf; delete dcIdbg; delete dcIdbo; delete dhIdbi; delete dhIdbf; delete dhIdbg; delete dhIdbo;
// }
// }