Yurii Shyrma 1f5e15b541 Shyrma adjust (#98)
* - add possibility of passing scalar-array as input parameter for scale factor in adjust hue/contrast/saturation ops
- correct typo in function which calculates regularized incomplete beta integral

Signed-off-by: Yurii <iuriish@yahoo.com>

* - fix bug in betainc cuda kernel

Signed-off-by: Yurii <iuriish@yahoo.com>

* - start working on implementation of digamma function

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on digamma function (cpu)

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing and fixing bugs in digamma op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - make correction n cuda kernel for polyGamma

Signed-off-by: Yurii <iuriish@yahoo.com>

* - remove unnecessary stuff from betaInc cuda kernel

Signed-off-by: Yurii <iuriish@yahoo.com>

* - resolve conflicts in DeclarableOpsTests3.cpp after master branch has been merged

Signed-off-by: Yurii <iuriish@yahoo.com>

* - restore id number of Not opertion in legacy_ops.h

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct padding calculation in mkl dnn conv1d causal

Signed-off-by: Yurii <iuriish@yahoo.com>

* restore empty check in adjust_contrast_v2

Signed-off-by: raver119 <raver119@gmail.com>
2019-12-03 09:40:45 +03:00
2019-11-29 16:31:03 +11:00
2019-12-02 19:20:23 +11:00
2019-11-29 16:31:03 +11:00
2019-12-03 09:40:45 +03:00
2019-12-02 21:37:21 +03:00
2019-11-29 16:31:03 +11:00
2019-11-29 16:31:03 +11:00
2019-11-29 16:31:03 +11:00
2019-11-14 19:38:20 +11:00
2019-06-06 15:21:15 +03:00
2019-06-06 15:21:15 +03:00
2019-12-02 19:20:23 +11:00
2019-09-10 19:09:46 +10:00

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials

Description
No description provided
Readme 108 MiB
Languages
Java 62.6%
C++ 25.3%
Cuda 4.6%
Kotlin 3.2%
PureBasic 1.8%
Other 2.3%