cavis/libnd4j/include/ops/declarable/platform/mkldnn/conv2d.cpp

369 lines
21 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
using namespace dnnl;
namespace nd4j {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////
static void conv2d_mkldnn(nd4j::graph::Context &block, const NDArray *input, const NDArray *weights,
const NDArray *bias, NDArray *output, const int kH, const int kW, const int sH,
const int sW, int pH, int pW, const int dH, const int dW, const int isSameMode,
const int isNCHW) {
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW,
indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
if(isSameMode) // SAME
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
dnnl_memory_desc_t empty;
dnnl::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md(
empty);
dnnl::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md(
empty);
dnnl::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
bS, iC, iH, iW, oC, oH, oW, input, nullptr, weights, nullptr,
bias, output,
&conv_src_md, nullptr, &conv_weights_md, nullptr,
&conv_bias_md, &conv_dst_md,
&user_src_md, nullptr, &user_weights_md, nullptr,
&user_bias_md, &user_dst_md,
conv_strides, conv_padding, conv_padding_r, conv_dilation);
auto conv_desc = bias != nullptr
? convolution_forward::desc(prop_kind::forward,
algorithm::convolution_auto, conv_src_md,
conv_weights_md, conv_bias_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding,
conv_padding_r)
: convolution_forward::desc(prop_kind::forward,
algorithm::convolution_auto, conv_src_md,
conv_weights_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding,
conv_padding_r);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine);
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine);
auto user_src_memory = dnnl::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
auto user_weights_memory = dnnl::memory(user_weights_md, engine,
const_cast<NDArray *>(weights)->buffer());
auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
auto conv_src_memory = user_src_memory;
if (conv_prim_desc.src_desc() != user_src_memory.get_desc()) {
conv_src_memory = dnnl::memory(conv_prim_desc.src_desc(), engine);
reorder(user_src_memory, conv_src_memory).execute(stream, user_src_memory, conv_src_memory);
}
auto conv_weights_memory = user_weights_memory;
if (conv_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
conv_weights_memory = dnnl::memory(conv_prim_desc.weights_desc(), engine);
reorder(user_weights_memory, conv_weights_memory).execute(stream, user_weights_memory,
conv_weights_memory);
}
auto conv_dst_memory = user_dst_memory;
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
conv_dst_memory = dnnl::memory(conv_prim_desc.dst_desc(), engine);
}
if (bias != nullptr) {
auto conv_bias_memory = dnnl::memory(conv_prim_desc.bias_desc(), engine,
const_cast<NDArray *>(bias)->buffer());
convolution_forward(conv_prim_desc).execute(stream, {{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_BIAS, conv_bias_memory},
{DNNL_ARG_DST, conv_dst_memory}});
} else {
convolution_forward(conv_prim_desc).execute(stream, {{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_DST, conv_dst_memory}});
}
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
reorder(conv_dst_memory, user_dst_memory).execute(stream, conv_dst_memory, user_dst_memory);
}
stream.wait();
}
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv2d) {
auto input = INPUT_VARIABLE(
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC] always
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto output = OUTPUT_VARIABLE(
0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
int sH = INT_ARG(2); // strides height
int sW = INT_ARG(3); // strides width
int pH = INT_ARG(4); // paddings height
int pW = INT_ARG(5); // paddings width
int dH = INT_ARG(6); // dilations height
int dW = INT_ARG(7); // dilations width
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
bool isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) height
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) width
conv2d_mkldnn(block, input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW);
return Status::OK();
}
PLATFORM_CHECK(conv2d) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
if (::optimalLevel() < 2)
return false;
auto input = INPUT_VARIABLE(0);
auto weights = INPUT_VARIABLE(1);
// conv2d is only available for float32 dtype
return block.isUseMKLDNN() && input->dataType() == nd4j::DataType::FLOAT32 &&
weights->dataType() == nd4j::DataType::FLOAT32;
}
//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv2d_bp) {
auto input = INPUT_VARIABLE(
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weights = INPUT_VARIABLE(
1); // [kH, kW, iC, oC] always
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
auto gradW = OUTPUT_VARIABLE(
1); // [kH, kW, iC, oC] always
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
int kH = INT_ARG(0); // filter(kernel) height
int kW = INT_ARG(1); // filter(kernel) width
int sH = INT_ARG(2); // strides height
int sW = INT_ARG(3); // strides width
int pH = INT_ARG(4); // paddings height
int pW = INT_ARG(5); // paddings width
int dH = INT_ARG(6); // dilations height
int dW = INT_ARG(7); // dilations width
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
REQUIRE_TRUE(input->rankOf() == 4, 0,
"CUSTOM CONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !",
input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 4, 0,
"CUSTOM CONV2D_BP OP: rank of weights array must be equal to 4, but got %i instead !",
weights->rankOf());
REQUIRE_TRUE(gradO->rankOf() == 4, 0,
"CUSTOM CONV2D_BP OP: rank of output's gradients (next epsilon) array must be equal to 4, but got %i instead !",
gradO->rankOf());
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC,
indIiH, indWiC, indWoC, indWkH, indOoH);
if (isSameMode) // SAME
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
dnnl_memory_desc_t empty;
dnnl::memory::desc conv_src_md(empty), conv_diff_src_md(empty), conv_weights_md(empty),
conv_diff_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty);
dnnl::memory::desc user_src_md(empty), user_diff_src_md(empty), user_weights_md(empty),
user_diff_weights_md(empty), user_bias_md(empty), user_dst_md(empty);
dnnl::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
bS, iC, iH, iW, oC, oH, oW, input, gradI, weights, gradW,
gradB, gradO,
&conv_src_md, &conv_diff_src_md, &conv_weights_md,
&conv_diff_weights_md, &conv_bias_md, &conv_dst_md,
&user_src_md, &user_diff_src_md, &user_weights_md,
&user_diff_weights_md, &user_bias_md, &user_dst_md,
conv_strides, conv_padding, conv_padding_r, conv_dilation);
auto conv_desc = gradB != nullptr
? convolution_forward::desc(prop_kind::forward,
algorithm::convolution_auto, conv_src_md,
conv_weights_md, conv_bias_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding,
conv_padding_r)
: convolution_forward::desc(prop_kind::forward,
algorithm::convolution_auto, conv_src_md,
conv_weights_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding,
conv_padding_r);
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, mkldnnUtils::getEngine(
LaunchContext::defaultContext()->engine()));
if (gradW != nullptr) {
auto convW_desc = gradB != nullptr
? convolution_backward_weights::desc(
algorithm::convolution_auto, conv_src_md, conv_diff_weights_md, conv_bias_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
: convolution_backward_weights::desc(
algorithm::convolution_auto, conv_src_md, conv_diff_weights_md,
conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine);
auto convW_prim_desc = convolution_backward_weights::primitive_desc(convW_desc, engine,
conv_prim_desc);
auto userW_src_memory = dnnl::memory(user_src_md, engine,
const_cast<NDArray *>(input)->buffer());
auto userW_weights_memory = dnnl::memory(user_diff_weights_md, engine, gradW->buffer());
auto userW_dst_memory = dnnl::memory(user_dst_md, engine,
const_cast<NDArray *>(gradO)->buffer());
auto convW_src_memory = userW_src_memory;
if (convW_prim_desc.src_desc() != userW_src_memory.get_desc()) {
convW_src_memory = dnnl::memory(convW_prim_desc.src_desc(), engine);
reorder(userW_src_memory, convW_src_memory).execute(stream, userW_src_memory,
convW_src_memory);
}
auto convW_weights_memory = userW_weights_memory;
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
convW_weights_memory = dnnl::memory(convW_prim_desc.diff_weights_desc(), engine);
}
auto convW_dst_memory = userW_dst_memory;
if (convW_prim_desc.diff_dst_desc() != userW_dst_memory.get_desc()) {
convW_dst_memory = dnnl::memory(convW_prim_desc.diff_dst_desc(), engine);
reorder(userW_dst_memory, convW_dst_memory).execute(stream, userW_dst_memory,
convW_dst_memory);
}
if (gradB != nullptr) {
auto convW_bias_memory = dnnl::memory(convW_prim_desc.diff_bias_desc(), engine,
gradB->buffer());
convolution_backward_weights(convW_prim_desc).execute(stream,
{{DNNL_ARG_SRC, convW_src_memory},
{DNNL_ARG_DIFF_DST, convW_dst_memory},
{DNNL_ARG_DIFF_WEIGHTS, convW_weights_memory},
{DNNL_ARG_DIFF_BIAS, convW_bias_memory}});
} else {
convolution_backward_weights(convW_prim_desc).execute(stream,
{{DNNL_ARG_SRC, convW_src_memory},
{DNNL_ARG_DIFF_DST, convW_dst_memory},
{DNNL_ARG_DIFF_WEIGHTS, convW_weights_memory}});
}
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
reorder(convW_weights_memory, userW_weights_memory).execute(stream, convW_weights_memory,
userW_weights_memory);
}
stream.wait();
}
if (gradI != nullptr) {
auto convI_desc =
convolution_backward_data::desc(algorithm::convolution_auto, conv_diff_src_md,
conv_weights_md, conv_dst_md, conv_strides, conv_dilation,
conv_padding, conv_padding_r);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine);
auto convI_prim_desc = convolution_backward_data::primitive_desc(convI_desc, engine,
conv_prim_desc);
auto userI_src_memory = dnnl::memory(user_diff_src_md, engine, gradI->buffer());
auto userI_weights_memory = dnnl::memory(user_weights_md, engine,
const_cast<NDArray *>(weights)->buffer());
auto userI_dst_memory = dnnl::memory(user_dst_md, engine,
const_cast<NDArray *>(gradO)->buffer());
auto convI_src_memory = userI_src_memory;
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
convI_src_memory = dnnl::memory(convI_prim_desc.diff_src_desc(), engine);
}
auto convI_weights_memory = userI_weights_memory;
if (convI_prim_desc.weights_desc() != userI_weights_memory.get_desc()) {
convI_weights_memory = dnnl::memory(convI_prim_desc.weights_desc(), engine);
reorder(userI_weights_memory, convI_weights_memory).execute(stream, userI_weights_memory,
convI_weights_memory);
}
auto convI_dst_memory = userI_dst_memory;
if (convI_prim_desc.diff_dst_desc() != userI_dst_memory.get_desc()) {
convI_dst_memory = dnnl::memory(convI_prim_desc.diff_dst_desc(), engine);
reorder(userI_dst_memory, convI_dst_memory).execute(stream, userI_dst_memory,
convI_dst_memory);
}
convolution_backward_data(convI_prim_desc).execute(stream,
{{DNNL_ARG_DIFF_DST, convI_dst_memory},
{DNNL_ARG_WEIGHTS, convI_weights_memory},
{DNNL_ARG_DIFF_SRC, convI_src_memory}});
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
reorder(convI_src_memory, userI_src_memory).execute(stream, convI_src_memory,
userI_src_memory);
}
stream.wait();
};
return Status::OK();
}
PLATFORM_CHECK(conv2d_bp) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
if (::optimalLevel() < 2)
return false;
auto input = INPUT_VARIABLE(
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weights = INPUT_VARIABLE(
1); // [kH, kW, iC, oC] always
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
auto gradW = OUTPUT_VARIABLE(
1); // [kH, kW, iC, oC] always
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
return block.isUseMKLDNN() &&
nd4j::MKLDNNStream::isSupported({input, weights, bias, gradO, gradI, gradW, gradB});
}
}
}
}