Go to file
Chris Bamford 1a35ebec2e
RL4J: Add Backwardly Compatible Builder patterns (#326)
* Starting to switch configs of RL algorithms to use more fluent builder patterns. Many parameter choices in different algorithms default to SOTA and only be changed in specific cases

Signed-off-by: Bam4d <chris.bam4d@gmail.com>

* remove personal gpu-build file

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* refactored out configurations so they are heirarchical and re-usable, this is a step towards having a plug-and-play framework for different algorithms

* backwardly compatible configurations

* adding documentation to new configuration classes

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* private access modifiers are better suited here

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* RL4j does not compile without java 8 due to previous updates

fixing null pointers when listener arrays are empty

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* fixing copyright headers

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* uncomment logging line

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

* fixing default value for learningUpdateFrequency

fixing test failure due to #352

Signed-off-by: Bam4d <chrisbam4d@gmail.com>

Co-authored-by: Bam4d <chris.bam4d@gmail.com>
2020-04-06 12:36:12 +09:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Small fixes (#355) 2020-04-01 15:11:39 +11:00
datavec RL4J: Add Backwardly Compatible Builder patterns (#326) 2020-04-06 12:36:12 +09:00
deeplearning4j Fix incompatibilities with generated code (#303) 2020-04-01 12:00:38 +11:00
docs Mention the new % unit for maxBytes and maxPhysicalBytes in Memory management documentation (#8435) (#8461) 2019-12-05 12:47:53 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j - correct reshape op for empty shapes (#354) 2020-04-01 15:13:34 +11:00
nd4j Build fix (#357) 2020-04-01 19:09:48 +11:00
nd4s SameDiff multi-threaded inference (#263) 2020-03-20 21:24:39 +11:00
pydatavec Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
pydl4j Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
rl4j RL4J: Add Backwardly Compatible Builder patterns (#326) 2020-04-06 12:36:12 +09:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore Remove the two files that get generated by javacpp to avoid conflicts. Also add them to .gitignore 2020-03-10 10:05:56 +00:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Upgrade python version to 3.7.7 from 3.7.6 (#346) 2020-03-25 19:42:08 +11:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials