80 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
 * Copyright (c) 2015-2018 Skymind, Inc.
 | 
						|
 *
 | 
						|
 * This program and the accompanying materials are made available under the
 | 
						|
 * terms of the Apache License, Version 2.0 which is available at
 | 
						|
 * https://www.apache.org/licenses/LICENSE-2.0.
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | 
						|
 * License for the specific language governing permissions and limitations
 | 
						|
 * under the License.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
//
 | 
						|
// Created by raver119 on 12.10.2017.
 | 
						|
//
 | 
						|
 | 
						|
#include <system/op_boilerplate.h>
 | 
						|
#if NOT_EXCLUDED(OP_tear)
 | 
						|
 | 
						|
#include <ops/declarable/CustomOperations.h>
 | 
						|
#include <helpers/TAD.h>
 | 
						|
#include <helpers/ConstantTadHelper.h>
 | 
						|
 | 
						|
namespace sd {
 | 
						|
    namespace ops {
 | 
						|
        CUSTOM_OP_IMPL(tear, 1, -1, false, 0, -1) {
 | 
						|
            auto input = INPUT_VARIABLE(0);
 | 
						|
 | 
						|
            REQUIRE_TRUE(!block.getIArguments()->empty(), 0, "At least 1 dimension should be specified for Tear");
 | 
						|
 | 
						|
            std::vector<int> dims(*block.getIArguments());
 | 
						|
 | 
						|
            for (auto &v: dims)
 | 
						|
                REQUIRE_TRUE(v >= 0 && v < input->rankOf(), 0, "Tear dimensions should be non-negative values, and lower then input rank. Got %i instead", v);
 | 
						|
 | 
						|
            auto tads = input->allTensorsAlongDimension(dims);
 | 
						|
            for (Nd4jLong e = 0; e < tads.size(); e++) {
 | 
						|
                auto outE = OUTPUT_VARIABLE(e);
 | 
						|
                outE->assign(tads.at(e));
 | 
						|
 | 
						|
                // just for debugging purposes
 | 
						|
                this->storeResult(block, e, *outE);
 | 
						|
            }
 | 
						|
 | 
						|
            return Status::OK();
 | 
						|
        }
 | 
						|
 | 
						|
        DECLARE_SHAPE_FN(tear) {
 | 
						|
            auto inShape = inputShape->at(0);
 | 
						|
 | 
						|
            std::vector<int> dims(*block.getIArguments());
 | 
						|
 | 
						|
            if (dims.size() > 1)
 | 
						|
                std::sort(dims.begin(), dims.end());
 | 
						|
 | 
						|
            auto tadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(inShape, dims);
 | 
						|
            auto numTads = tadPack.numberOfTads();
 | 
						|
 | 
						|
            auto result = SHAPELIST();
 | 
						|
            for (Nd4jLong e = 0; e < numTads; e++) {
 | 
						|
                auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(block.dataType(), shape::order(inShape), shape::rank(tadPack.primaryShapeInfo()), shape::shapeOf(tadPack.primaryShapeInfo()));
 | 
						|
                result->push_back(newShape);
 | 
						|
            }
 | 
						|
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
 | 
						|
        DECLARE_TYPES(tear) {
 | 
						|
            getOpDescriptor()
 | 
						|
                    ->setAllowedInputTypes(sd::DataType::ANY)
 | 
						|
                    ->setSameMode(true);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif |