* libnd4j first step of mkldnn for xw_plus_b and test of aurora crash in imageHelper * libnd4j sync folders with master * libnd4j merge master, raw implementation of xw_plus_b on mkldnn, clean up, need testing and adding checks for corresponded input shapes * libnd4j corrections and checks added to xw_plus_b mkl * libnd4j corrected dataType description based on mkl operation description, need more investigation * libnd4j fixe xw_blus_b mkl implementation, need testing Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j two unit tests added Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j fixed check input dimensions bug Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libndj4 one more test added to cover different order handling Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j added optional int arg support to define weights format, if arg == 1, mkldnn (do not need transpose in mkldnn implementation), else mmul weights format, corrected check points, added unit test Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j merge master Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j some improvements to avoid NDArray transpose in xw_plus_b operation Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j fixed issues connected with weights rank, also added support of one case based on tf (for mkldnn, cpu, cuda), test case added Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j added proper handling of empty inputs (all implementations) * libnd4j fixed compilation error * libnd4j several more corrections after conflict solve and fixed typos Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j removed unsupported data types Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j merge master and fixed issues Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j added propagation implementation for xw_plus_b, fixed issue connected with mkl weights data format, avoided data copy in transpose mode, test cases added, manually tested with gradCheck Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j one minor fix of double operation declaration Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j code clean up Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j minor tests fixes Signed-off-by: Oleg <oleg.semeniv@gmail.com> * libnd4j fixed build problem, integrate helpers changes Signed-off-by: Oleg <oleg.semeniv@gmail.com> Co-authored-by: raver119 <raver119@gmail.com>
		
			
				
	
	
		
			145 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*******************************************************************************
 | |
|  * Copyright (c) 2015-2018 Skymind, Inc.
 | |
|  *
 | |
|  * This program and the accompanying materials are made available under the
 | |
|  * terms of the Apache License, Version 2.0 which is available at
 | |
|  * https://www.apache.org/licenses/LICENSE-2.0.
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | |
|  * License for the specific language governing permissions and limitations
 | |
|  * under the License.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  ******************************************************************************/
 | |
| 
 | |
|  //
 | |
|  //  xw_plus_b op. Created by GS <george@skymind.io> 31.01.2018
 | |
|  //  @author Oleg Semeniv <oleg.semeniv@gmail.com>
 | |
|  //
 | |
|  //
 | |
| 
 | |
| #include <system/op_boilerplate.h>
 | |
| #if NOT_EXCLUDED(OP_xw_plus_b)
 | |
| 
 | |
| #include <ops/declarable/CustomOperations.h>
 | |
| #include <ops/declarable/helpers/matmul.h>
 | |
| #include <helpers/MmulHelper.h>
 | |
| 
 | |
| namespace sd {
 | |
|     namespace ops {
 | |
|         CUSTOM_OP_IMPL(xw_plus_b, 3, 1, false, 0, 0) {
 | |
| 
 | |
|             auto x = INPUT_VARIABLE(0);
 | |
| 
 | |
|             auto b = INPUT_VARIABLE(2);
 | |
|             auto z = OUTPUT_VARIABLE(0);
 | |
| 
 | |
|             if (x->isEmpty() || INPUT_VARIABLE(1)->isEmpty() || b->isEmpty())
 | |
|                 return Status::OK();
 | |
| 
 | |
|             const bool bTranspose = (block.getIArguments()->size() > 0 ? INT_ARG(0) == 1 : false);
 | |
| 
 | |
|             auto w = bTranspose ? new NDArray(INPUT_VARIABLE(1)->transpose()) : INPUT_VARIABLE(1);
 | |
| 
 | |
|             REQUIRE_TRUE(x->rankOf() == 2, 0, "xw_plus_b: Input x array should have rank equal 2, but got instead %i!", x->rankOf());
 | |
|             REQUIRE_TRUE(w->rankOf() == 2, 0, "xw_plus_b: Input weights array should have rank equal 2, but got instead %i!", w->rankOf());
 | |
|             REQUIRE_TRUE(z->rankOf() == 2, 0, "xw_plus_b: Output array should have rank equal 2, but got instead %i!", z->rankOf());
 | |
| 
 | |
|             REQUIRE_TRUE(1 == b->rankOf() && b->lengthOf() == z->sizeAt(-1), 0, "xw_plus_b: Input bias vector should be 1D and have proper dimension 1x%i."
 | |
|                 " But got rank %i, and got length %i instead %i.", z->sizeAt(-1), b->rankOf(), b->lengthOf(), z->sizeAt(-1));
 | |
| 
 | |
|             // multiply x to y
 | |
|             MmulHelper::mmul(x, w, z, 1.0, 0.0);
 | |
| 
 | |
|             // adding b vector
 | |
|             z->addiRowVector(*b);
 | |
| 
 | |
|             if (bTranspose)
 | |
|                 delete w;
 | |
| 
 | |
|             return Status::OK();
 | |
|         }
 | |
| 
 | |
|         DECLARE_SHAPE_FN(xw_plus_b) {
 | |
| 
 | |
|             auto weights = INPUT_VARIABLE(1);
 | |
| 
 | |
|             const int nWeightsFormat = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0;
 | |
| 
 | |
|             auto weightsShape = (1 == nWeightsFormat) ? ShapeUtils::evalTranspShapeInfo(*weights, block.getWorkspace()) : inputShape->at(1);
 | |
| 
 | |
|             auto outputShape = ShapeUtils::matrixProductShape(inputShape->at(0), weightsShape, false, false,
 | |
|                 ArrayOptions::dataType(inputShape->at(0)), block.getWorkspace());
 | |
| 
 | |
|             return SHAPELIST(CONSTANT(outputShape));
 | |
|         }
 | |
| 
 | |
|         DECLARE_TYPES(xw_plus_b) {
 | |
|             getOpDescriptor()
 | |
|                 ->setAllowedInputTypes(sd::DataType::ANY)
 | |
|                 ->setAllowedOutputTypes({ ALL_FLOATS });
 | |
|         }
 | |
| 
 | |
| 
 | |
|         CUSTOM_OP_IMPL(xw_plus_b_bp, 4, 3, false, 0, 0) {
 | |
| 
 | |
|             auto x = INPUT_VARIABLE(0);
 | |
|             auto b = INPUT_VARIABLE(2);
 | |
|             auto dLdz = INPUT_VARIABLE(3);
 | |
| 
 | |
|             auto dLdx = OUTPUT_VARIABLE(0);
 | |
|             auto dLdb = OUTPUT_VARIABLE(2);
 | |
| 
 | |
|             if (x->isEmpty() || INPUT_VARIABLE(1)->isEmpty() || b->isEmpty() || dLdz->isEmpty())
 | |
|                 return Status::OK();
 | |
| 
 | |
|             const bool bTranspose = (block.getIArguments()->size() > 0 ? INT_ARG(0) == 1 : false);
 | |
| 
 | |
|             auto w = bTranspose ? new NDArray(INPUT_VARIABLE(1)->transpose()) : INPUT_VARIABLE(1);
 | |
| 
 | |
|             REQUIRE_TRUE(x->rankOf() == 2, 0, "xw_plus_b BP: Input x array should have rank equal 2, but got instead %i!", x->rankOf());
 | |
|             REQUIRE_TRUE(w->rankOf() == 2, 0, "xw_plus_b BP: Input weights array should have rank equal 2, but got instead %i!", w->rankOf());
 | |
|             REQUIRE_TRUE(dLdz->rankOf() == 2, 0, "xw_plus_b BP: Output array should have rank equal 2, but got instead %i!", dLdz->rankOf());
 | |
|             REQUIRE_TRUE(1 == b->rankOf() && b->lengthOf() == dLdz->sizeAt(-1), 0, "xw_plus_b BP: Input bias vector should be 1D and have proper dimension 1x%i."
 | |
|                 " But got rank %i, and got length %i instead %i.", dLdz->sizeAt(-1), b->rankOf(), b->lengthOf(), dLdz->sizeAt(-1));
 | |
| 
 | |
|             auto dLdw = (bTranspose) ? new NDArray(OUTPUT_VARIABLE(1)->transpose()) : OUTPUT_VARIABLE(1);
 | |
| 
 | |
|             // dLdb
 | |
|             dLdb->assign(dLdz->reduceAlongDimension(reduce::Sum, { 0 }));
 | |
| 
 | |
|             matmul_bp mmul_bp;
 | |
|             mmul_bp.execute({ x, w, dLdz }, std::vector<NDArray*>{dLdx, dLdw}, {}, {}, {});
 | |
| 
 | |
|             if (bTranspose) {
 | |
|                 delete w;
 | |
|                 delete dLdw;
 | |
|             }
 | |
|             return Status::OK();
 | |
|         }
 | |
| 
 | |
|         DECLARE_SHAPE_FN(xw_plus_b_bp) {
 | |
| 
 | |
|             Nd4jLong* xShapeInfo;
 | |
|             Nd4jLong* wShapeInfo;
 | |
|             Nd4jLong* bShapeInfo;
 | |
| 
 | |
|             COPY_SHAPE(inputShape->at(0), xShapeInfo);
 | |
|             COPY_SHAPE(inputShape->at(1), wShapeInfo);
 | |
|             COPY_SHAPE(inputShape->at(2), bShapeInfo);
 | |
| 
 | |
|             return SHAPELIST(CONSTANT(xShapeInfo), CONSTANT(wShapeInfo), CONSTANT(bShapeInfo));
 | |
|         }
 | |
| 
 | |
|         DECLARE_TYPES(xw_plus_b_bp) {
 | |
|             getOpDescriptor()
 | |
|                 ->setAllowedInputTypes(sd::DataType::ANY)
 | |
|                 ->setAllowedOutputTypes({ ALL_FLOATS });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |