221 lines
10 KiB
C++
221 lines
10 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com, created on 29/10/17.
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), changed on 14.05.2018
|
|
//
|
|
|
|
#include <system/op_boilerplate.h>
|
|
#if NOT_EXCLUDED(OP_avgpool2d)
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
CUSTOM_OP_IMPL(avgpool2d, 1, 1, false, 0, 10) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto output = OUTPUT_NULLIFIED(0);
|
|
|
|
// 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode;
|
|
|
|
const auto kH = INT_ARG(0);
|
|
const auto kW = INT_ARG(1);
|
|
const auto sH = INT_ARG(2);
|
|
const auto sW = INT_ARG(3);
|
|
auto pH = INT_ARG(4);
|
|
auto pW = INT_ARG(5);
|
|
const auto dH = INT_ARG(6);
|
|
const auto dW = INT_ARG(7);
|
|
const auto isSameMode = static_cast<bool>(INT_ARG(8));
|
|
const auto extraParam0 = INT_ARG(9);
|
|
const int isNCHW = block.getIArguments()->size() > 10 ? !INT_ARG(10) : 1; // INT_ARG(10): 0-NCHW, 1-NHWC
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "AVGPOOL2D op: input should have rank of 4, but got %i instead", input->rankOf());
|
|
REQUIRE_TRUE(dH != 0 && dW != 0, 0, "AVGPOOL2D op: dilation must not be zero, but got instead {%i, %i}", dH, dW);
|
|
|
|
int oH = 0;
|
|
int oW = 0;
|
|
|
|
const int iH = static_cast<int>(isNCHW ? input->sizeAt(2) : input->sizeAt(1));
|
|
const int iW = static_cast<int>(isNCHW ? input->sizeAt(3) : input->sizeAt(2));
|
|
|
|
if(!isNCHW) {
|
|
input = new NDArray(input->permute({0, 3, 1, 2})); // [bS, iH, iW, iC] -> [bS, iC, iH, iW]
|
|
output = new NDArray(output->permute({0, 3, 1, 2})); // [bS, oH, oW, iC] -> [bS, iC, oH, oW]
|
|
}
|
|
|
|
ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
if (isSameMode)
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
|
|
|
|
// 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - poolingMode; 9 - divisor;
|
|
ConvolutionUtils::pooling2d(block, *input, *output, kH, kW, sH, sW, pH, pW, dH, dW, PoolingType::AVG_POOL, extraParam0);
|
|
|
|
if(!isNCHW) {
|
|
delete input;
|
|
delete output;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SYN(AvgPool2D, avgpool2d);
|
|
DECLARE_SYN(AvgPool, avgpool2d);
|
|
DECLARE_SYN(avgpool, avgpool2d);
|
|
|
|
DECLARE_TYPES(avgpool2d) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(avgpool2d) {
|
|
|
|
auto inShape = inputShape->at(0);
|
|
auto shapeOf = shape::shapeOf(inShape);
|
|
|
|
// 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode;
|
|
auto argI = *(block.getIArguments());
|
|
const int kH = INT_ARG(0);
|
|
const int kW = INT_ARG(1);
|
|
const int sH = INT_ARG(2);
|
|
const int sW = INT_ARG(3);
|
|
const int pH = INT_ARG(4);
|
|
const int pW = INT_ARG(5);
|
|
const int dH = INT_ARG(6);
|
|
const int dW = INT_ARG(7);
|
|
const int isSameMode = INT_ARG(8);
|
|
|
|
const int isNCHW = block.getIArguments()->size() > 10 ? !INT_ARG(10) : 1; // INT_ARG(10): 0-NCHW, 1-NHWC
|
|
|
|
REQUIRE_TRUE(dH != 0 && dW != 0, 0, "AVGPOOL2D op: dilation must not be zero, but got instead {%i, %i}", dH, dW);
|
|
|
|
const int bS = shapeOf[0];
|
|
const int iD = isNCHW ? shapeOf[1] : shapeOf[3];
|
|
const int iH = isNCHW ? shapeOf[2] : shapeOf[1];
|
|
const int iW = isNCHW ? shapeOf[3] : shapeOf[2];
|
|
|
|
const char order = shape::order(inShape); // output order must be equal to input order
|
|
|
|
// calculate output Height/Width
|
|
int oH, oW;
|
|
ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
// allocate memory for new shape
|
|
Nd4jLong newShape[4];
|
|
if (isNCHW) {
|
|
newShape[0] = bS;
|
|
newShape[1] = iD;
|
|
newShape[2] = oH;
|
|
newShape[3] = oW;
|
|
} else {
|
|
newShape[0] = bS;
|
|
newShape[1] = oH;
|
|
newShape[2] = oW;
|
|
newShape[3] = iD;
|
|
}
|
|
|
|
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), newShape, 4)));
|
|
}
|
|
|
|
DECLARE_TYPES(avgpool2d_bp) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
CUSTOM_OP_IMPL(avgpool2d_bp, 2, 1, false, 0, 10) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto gradO = INPUT_VARIABLE(1); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
auto gradI = OUTPUT_NULLIFIED(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int extraParam0 = INT_ARG(9);
|
|
int isNCHW = block.getIArguments()->size() > 10 ? !INT_ARG(10) : 1; // INT_ARG(10): 0-NCHW, 1-NHWC
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "AVGPOOL2D_BP op: input should have rank of 4, but got %i instead", input->rankOf());
|
|
REQUIRE_TRUE(dH != 0 && dW != 0, 0, "AVGPOOL2D_BP op: dilation must not be zero, but got instead {%i, %i}", dH, dW);
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oH,oW, 0,indIOioC,indIiH,indIiH+1});
|
|
std::vector<Nd4jLong> expectedGradIShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,iH,iW, 0,indIOioC,indIiH,indIiH+1});
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "AVGPOOL2D_BP op: wrong shape of output's gradients array (next epsilon), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(gradI->isSameShape(expectedGradIShape), 0, "AVGPOOL2D_BP op: wrong shape of input's gradients array (epsilon), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradIShape).c_str(), ShapeUtils::shapeAsString(gradI).c_str());
|
|
|
|
if(!isNCHW) {
|
|
input = new NDArray(input->permute({0, 3, 1, 2})); // [bS, iH, iW, iC] -> [bS, iC, iH, iW]
|
|
gradI = new NDArray(gradI->permute({0, 3, 1, 2})); // [bS, iH, iW, iC] -> [bS, iC, iH, iW]
|
|
gradO = new NDArray(gradO->permute({0, 3, 1, 2})); // [bS, oH, oW, iC] -> [bS, iC, oH, oW]
|
|
}
|
|
|
|
if(isSameMode) // SAME
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
|
|
|
|
// NDArray<T> columnsWrongShape(input->ordering(), {bS, iC, oH, oW, kH, kW}, input->getWorkspace());
|
|
// NDArray<T>* columns = columnsWrongShape.permute({0, 1, 4, 5, 2, 3}); // [bS, iC, oH, oW, kH, kW] -> [bS, iC, kH, kW, oH, oW]
|
|
// NDArray<T>* gradOVector = gradO->reshape('c', {(int) gradO->lengthOf(), 1});
|
|
// NDArray<T>* columns2d = columnsWrongShape.reshape('c', {bS*iC*oH*oW, kH*kW});
|
|
|
|
// columns2d->addiColumnVector(gradOVector);
|
|
|
|
// columns->template applyTransform<simdOps::Col2Im<T>>(gradI, std::vector<T>({(T)sH, (T)sW, (T)pH, (T)pW, (T)iH, (T)iW, (T)dH, (T)dW}).data());
|
|
|
|
// *gradI /= kH*kW;
|
|
|
|
// 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - poolingMode; 9 - divisor;
|
|
ConvolutionUtils::pooling2dBP(block, *input, *gradO, *gradI, kH, kW, sH, sW, pH, pW, dH, dW, 1, extraParam0);
|
|
|
|
if(!isNCHW) {
|
|
delete input;
|
|
delete gradI;
|
|
delete gradO;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(avgpool2d_bp) {
|
|
|
|
REQUIRE_TRUE(inputShape->at(0)[0] == 4, 0, "AVGPOOL2D_BP op: input array must be 4D, but got %i instead!", inputShape->at(0)[0]);
|
|
REQUIRE_TRUE(inputShape->at(1)[0] == 4, 0, "AVGPOOL2D_BP op: output's gradient array (next epsilon) must be 4D, but got %i instead!", inputShape->at(1)[0]);
|
|
|
|
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(inputShape->at(0), ArrayOptions::dataType(inputShape->at(1)))));
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|