cavis/libnd4j/include/loops/cuda/reduce/reduce_float.chpp
raver119 24e43e9856
[WIP] build time improvements (#106)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* Fix functions of OpaqueVariablesSet

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* couple of legacy groups reorganized into separate compialtion units

Signed-off-by: raver119 <raver119@gmail.com>

* wrong include

Signed-off-by: raver119 <raver119@gmail.com>

* wrong include

Signed-off-by: raver119 <raver119@gmail.com>

* ReductionLoops_float split

Signed-off-by: raver119 <raver119@gmail.com>

* maximum

Signed-off-by: raver119 <raver119@gmail.com>

* some more rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* spare ifdef

Signed-off-by: raver119 <raver119@gmail.com>

* mirror pad

Signed-off-by: raver119 <raver119@gmail.com>

* - reduce_float split
- mcmodel

Signed-off-by: raver119 <raver119@gmail.com>

* bad include fix

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax gone

Signed-off-by: raver119 <raver119@gmail.com>

* get back sm

Signed-off-by: raver119 <raver119@gmail.com>

* fix couple of tests for msvc

Signed-off-by: raver119 <raver119@gmail.com>

* fix couple of tests for msvc

Signed-off-by: raver119 <raver119@gmail.com>

* compress-all

Signed-off-by: raver119 <raver119@gmail.com>

* reduced arch list

Signed-off-by: raver119 <raver119@gmail.com>

* compress-all

Signed-off-by: raver119 <raver119@gmail.com>

* reduced arch list

Signed-off-by: raver119 <raver119@gmail.com>

* all compute capabilities option for tests

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-07 17:49:13 +03:00

312 lines
14 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <execution/LaunchContext.h>
#include <exceptions/cuda_exception.h>
#include <op_boilerplate.h>
#include <loops/reduce_float.h>
#include <loops/scalar.h>
#include <loops/legacy_ops.h>
#include <helpers/DebugHelper.h>
#include <types/types.h>
#include <specials_cuda.h>
#include <cuda.h>
#include <cuda_runtime.h>
using namespace simdOps;
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z, typename OpType>
__global__ void simpleReduce(void *x, Nd4jLong *xShapeInfo,
void *extraParams,
void *z, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
functions::reduce::ReduceFloatFunction<X,Z>::template transformCudaXD<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z, typename OpType>
__global__ void simpleScalar(void *x, Nd4jLong *xShapeInfo,
void *extraParams,
void *z, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
functions::reduce::ReduceFloatFunction<X, Z>::template execScalarCuda<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo);
}
namespace functions {
namespace reduce {
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template <typename OpType>
__device__ void ReduceFloatFunction<X,Z>::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) {
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
auto sPartials = reinterpret_cast<Z*>(vsPartials);
auto extraParams = reinterpret_cast<Z*>(vextraParams);
Nd4jLong floorPow2 = numItems;
if (floorPow2 & (floorPow2 - 1)) {
while (floorPow2 & (floorPow2 - 1))
floorPow2 &= floorPow2 - 1;
if (tid >= floorPow2)
sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
__syncthreads();
}
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
if (tid < activeThreads && tid + activeThreads < numItems)
sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
__syncthreads();
}
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template <typename OpType>
__device__ void ReduceFloatFunction<X,Z>::transformCudaXD( void *vx, Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
void *vreductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
auto x = reinterpret_cast<X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
auto extraParams = reinterpret_cast<Z*>(vextraParams);
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
//shared memory space for storing intermediate results
__shared__ Z* sPartials;
__shared__ int tadLength, numTads;
__shared__ bool isPlainOutput;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<Z*>(shmem);
isPlainOutput = shape::order(zShapeInfo) == 'c' && shape::elementWiseStride(zShapeInfo) == 1;
tadLength = shape::length(tadOnlyShapeInfo);
numTads = shape::length(xShapeInfo) / tadLength;
}
__syncthreads();
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
auto tadOffsetForBlock = tadOffsets[r];
sPartials[threadIdx.x] = OpType::startingValue(x + tadOffsetForBlock);
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength);
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[xOffset], extraParams), extraParams);
}
__syncthreads();
// aggregate. do NOT reduce for elements > tadLength
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
__syncthreads();
if (threadIdx.x == 0)
z[isPlainOutput ? r : shape::getIndexOffset(r, zShapeInfo, numTads)] = OpType::postProcess(sPartials[threadIdx.x], tadLength, extraParams);
}
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template <typename OpType>
__device__ void ReduceFloatFunction<X,Z>::execScalarCuda(void *vx, Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz, Nd4jLong *zShapeInfo,
void *vreductionBuffer,
Nd4jLong *tadOnlyShapeInfo) {
auto x = reinterpret_cast<X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
auto extraParams = reinterpret_cast<Z*>(vextraParams);
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
auto tid = blockDim.x * blockIdx.x + threadIdx.x;
//shared memory space for storing intermediate results
__shared__ Z* sPartials;
__shared__ Nd4jLong xEws;
__shared__ Nd4jLong len;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<Z*>(shmem);
xEws = shape::elementWiseStride(xShapeInfo);
len = shape::length(xShapeInfo);
}
__syncthreads();
sPartials[threadIdx.x] = OpType::startingValue(x);
if (xEws > 0)
for (int i = tid; i < len; i += (blockDim.x * gridDim.x))
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams);
else
for (int i = tid; i < len; i += blockDim.x * gridDim.x)
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo, len)], extraParams), extraParams);
__syncthreads();
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, len), extraParams);
__syncthreads();
if (gridDim.x > 1) {
unsigned int *tc = (unsigned int *)reductionBuffer;
__shared__ bool amLast;
tid = threadIdx.x;
if (threadIdx.x == 0)
reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams);
__threadfence();
__syncthreads();
if (threadIdx.x == 0) {
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
amLast = (ticket == gridDim.x - 1);
}
__syncthreads();
if (amLast) {
tc[16384] = 0;
sPartials[threadIdx.x] = OpType::startingValue(x);
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x)
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams);
__syncthreads();
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraParams);
__syncthreads();
if (threadIdx.x == 0) {
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
}
}
}
else {
if (threadIdx.x == 0) {
unsigned int *tc = (unsigned *)reductionBuffer;
tc[16384] = 0;
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
}
}
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
__host__ void ReduceFloatFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShape, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShape, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
if(shape::isEmpty(hXShapeInfo)) {
if(shape::isEmpty(hZShapeInfo))
return;
const auto startingVal = std::is_same<OpType, simdOps::Mean<X,Z>>::value ? nd4j::DataTypeUtils::nanOrZero<Z>() : static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
auto res = cudaMemcpyAsync(nd4j::LaunchContext::defaultContext()->getScalarPointer(), &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
if (res != 0)
throw nd4j::cuda_exception::build("ReduceFloatFunction<X,Z>::intermediateXD: failed to copy temporary scalar", res);
auto ptr = nd4j::LaunchContext::defaultContext()->getScalarPointer();
// scalar assign
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShape, hXShapeInfo, z, zShape, hZShapeInfo, ptr, nullptr);
}
else {
simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets);
}
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
__host__ void ReduceFloatFunction<X,Z>::intermediateScalar(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
if (shape::isEmpty(hXShapeInfo)) {
if (shape::isEmpty(hZShapeInfo))
return;
const auto startingVal = std::is_same<OpType, simdOps::Mean<X,Z>>::value ? nd4j::DataTypeUtils::nanOrZero<Z>() : static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
auto res = cudaMemcpyAsync(z, &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
if (res != 0)
throw nd4j::cuda_exception::build("ReduceFloatFunction<X,Z>::intermediateScalar: failed to copy resulting scalar", res);
}
else {
simpleScalar<X, Z, OpType> << < launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo);
}
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
_CUDA_H void ReduceFloatFunction<X,Y>::execReduceScalar(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, hXShapeInfo, extraParams, z, zShapeInfo, hZShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_FLOAT_OPS));
nd4j::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed");
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
_CUDA_H void ReduceFloatFunction<X,Y>::execReduceXD(dim3 launchDims, cudaStream_t *stream, int opNum, int rank, void *x, Nd4jLong *xShape, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShape, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, xShape, hXShapeInfo, extraParams, z, zShape, hZShapeInfo, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets), OPS_A(REDUCE_FLOAT_OPS));
DEBUG_KERNEL(stream, opNum);
}
////////////////////////////////////////////////////////////////////////
template <typename X>
__device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) {
int sPartialsLength = sMemSize / sizeof(X);
X *sPartialsDeref = (X *) *sPartials;
for (int i = 0; i < sPartialsLength; i++)
sPartialsDeref[i] = extraParams[0];
}
//BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES);
}
}