Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

400 lines
16 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 19.04.2018
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/activations.h>
#include <ShapeUtils.h>
#include <numeric>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void softMaxForVector_(void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo) {
T* inBuff = reinterpret_cast<T *>(input);
T* outBuff = reinterpret_cast<T *>(output);
T max = -DataTypeUtils::max<T>();
T sum = 0.;
int inEWS = shape::elementWiseStride(inShapeInfo);
int outEWS = shape::elementWiseStride(outShapeInfo);
int length = shape::length(inShapeInfo);
if (inEWS >= 1 && outEWS >= 1) {
if (inEWS == 1 && outEWS == 1) {
PRAGMA_OMP_SIMD_MAX(max)
for (int i = 0; i < length; i++)
max = nd4j::math::nd4j_max<T>(max, inBuff[i]);
PRAGMA_OMP_SIMD_SUM(sum)
for (int i = 0; i < length; i++) {
outBuff[i] = nd4j::math::nd4j_exp<T, T>(inBuff[i] - max);
sum += outBuff[i];
}
PRAGMA_OMP_SIMD
for (int i = 0; i < length; i++)
outBuff[i] /= sum;
}
else {
PRAGMA_OMP_SIMD_MAX(max)
for (int i = 0; i < length; i++)
max = nd4j::math::nd4j_max<T>(max, inBuff[i * inEWS]);
PRAGMA_OMP_SIMD_SUM(sum)
for (int i = 0; i < length; i++) {
T r = nd4j::math::nd4j_exp<T, T>(inBuff[i * inEWS] - max);
outBuff[i * outEWS] = r;
sum += r;
}
PRAGMA_OMP_SIMD
for (int i = 0; i < length; i++)
outBuff[i * outEWS] /= sum;
}
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
void static _softMaxDerivForVector(nd4j::LaunchContext * context, const void *input, const Nd4jLong *inShapeInfo, void *output) {
const T* inBuff = reinterpret_cast<const T *>(input);
T* outBuff = reinterpret_cast<T *>(output);
T max = -DataTypeUtils::max<T>();
T sum = 0.;
int length = shape::length(inShapeInfo);
#pragma omp simd reduction(maxT:max)
for (int i = 0; i < length; i++) {
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo, length);
max = nd4j::math::nd4j_max<T>(max, inBuff[offset]);
}
#pragma omp parallel for simd reduction(sumT:sum)
for (int i = 0; i < length; i++) {
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo, length);
outBuff[offset] = nd4j::math::nd4j_exp<T, T>(inBuff[offset] - max);
sum += outBuff[offset];
}
#pragma omp simd
for (int i = 0; i < length; i++) {
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo, length);
outBuff[offset] /= sum;
outBuff[offset] *= (1.f - outBuff[offset]); // derivative
}
}
///////////////////////////////////////////////////////////////////
void softmaxDerivative(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
const int rank = input.rankOf();
int temp;
if(shape::isCommonVector(input.getShapeInfo(), temp)) {
BUILD_SINGLE_SELECTOR(input.dataType(), _softMaxDerivForVector, (context, input.getBuffer(), input.getShapeInfo(), output.buffer()), FLOAT_TYPES);
}
else {
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDims(reduce::Max, {dimension}, true);
(input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily
auto sumAlongDim = output.reduceAlongDims(reduce::Sum, {dimension}, true);
output /= sumAlongDim;
output *= (1.f - output); // derivative
}
}
///////////////////////////////////////////////////////////////////
void softMaxForVector(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
if(!input.isVector() || !output.isVector())
throw std::runtime_error("ops::helpers::softMaxForVector function: input and output arrays must be vectors !");
auto xType = input.dataType();
BUILD_SINGLE_SELECTOR(xType, softMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
}
///////////////////////////////////////////////////////////////////
template <typename T>
void logSoftMaxForVector_(void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo) {
auto inBuff = reinterpret_cast<T *>(input);
auto outBuff = reinterpret_cast<T *>(output);
T max = -DataTypeUtils::max<T>();
T sum = 0;
auto inEWS = shape::elementWiseStride(inShapeInfo);
auto length = shape::length(inShapeInfo);
if (inEWS == 1) {
PRAGMA_OMP_SIMD_MAX(max)
for (int i = 0; i < length; i++)
max = nd4j::math::nd4j_max<T>(max, inBuff[i]);
PRAGMA_OMP_SIMD_SUM(sum)
for (int i = 0; i < length; i++) {
outBuff[i] = nd4j::math::nd4j_exp<T,T>(inBuff[i] - max);
sum += outBuff[i];
}
PRAGMA_OMP_SIMD
for (int i = 0; i < length; i++) {
outBuff[i] /= sum;
outBuff[i] = nd4j::math::nd4j_log<T,T>(outBuff[i]);
}
}
else if (inEWS > 1) {
PRAGMA_OMP_SIMD_MAX(max)
for (int i = 0; i < length; i++)
max = nd4j::math::nd4j_max<T>(max, inBuff[i * inEWS]);
PRAGMA_OMP_SIMD_SUM(sum)
for (int i = 0; i < length; i++) {
outBuff[i * inEWS] = nd4j::math::nd4j_exp<T,T>(inBuff[i * inEWS] - max);
sum += outBuff[i * inEWS];
}
PRAGMA_OMP_SIMD
for (int i = 0; i < length; i++) {
outBuff[i * inEWS] /= sum;
outBuff[i * inEWS] = nd4j::math::nd4j_log<T, T>(outBuff[i * inEWS]);
}
}
}
///////////////////////////////////////////////////////////////////
void logSoftMaxForVector(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
if(!input.isVector() || !output.isVector())
throw std::runtime_error("ops::helpers::logSoftMaxForVector function input and output arrays must be vectors !");
auto xType = input.dataType();
BUILD_SINGLE_SELECTOR(xType, logSoftMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void softmax_(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
const int rank = input.rankOf();
if(input.isVector()) {
if(rank == 1 || input.sizeAt(dimension) != 1)
softMaxForVector_<T>(input.getBuffer(), input.getShapeInfo(), output.buffer(), output.getShapeInfo());
else
output = 1.;
}
else if(input.isSameShapeStrict(&output)) {
TadPack tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {dimension});
Nd4jLong* tadShapeInfo = tadPack.primaryShapeInfo();
Nd4jLong* tadOffsets = tadPack.primaryOffsets();
const uint numOfSubArrs = tadPack.numberOfTads();
const uint tadLen = shape::length(tadShapeInfo);
if(shape::elementWiseStride(tadShapeInfo) == 1){
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfSubArrs; ++i) {
T* inBuff = input.bufferAsT<T>() + tadOffsets[i];
T* outBuff = output.bufferAsT<T>() + tadOffsets[i];
T max = -DataTypeUtils::max<T>();
T sum = 0;
for(uint j = 0; j < tadLen; ++j)
max = nd4j::math::nd4j_max<T>(max, inBuff[j]);
for (uint j = 0; j < tadLen; ++j) {
T temp = nd4j::math::nd4j_exp<T,T>(inBuff[j] - max);
outBuff[j] = temp;
sum += temp;
}
for (uint j = 0; j < tadLen; ++j)
outBuff[j] /= sum;
}
}
else {
uint inShapeInfoCast[MAX_RANK];
bool canCast = nd4j::DataTypeUtils::castShapeInfo(tadShapeInfo, inShapeInfoCast);
auto offsets = new Nd4jLong[tadLen];
shape::calcOffsets(tadShapeInfo, offsets);
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfSubArrs; ++i) {
T* inBuff = input.bufferAsT<T>() + tadOffsets[i];
T* outBuff = output.bufferAsT<T>() + tadOffsets[i];
T max = -DataTypeUtils::max<T>();
T sum = 0.f;
for(uint j = 0; j < tadLen; ++j)
max = nd4j::math::nd4j_max<T>(max, inBuff[offsets[j]]);
for (uint j = 0; j < tadLen; ++j) {
T temp = nd4j::math::nd4j_exp<T,T>(inBuff[offsets[j]] - max);
outBuff[offsets[j]] = temp;
sum += temp;
}
for (uint j = 0; j < tadLen; ++j)
outBuff[offsets[j]] /= sum;
}
delete []offsets;
}
}
else {
NDArray max = input.reduceAlongDims(nd4j::reduce::Max, {dimension}, true);
input.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Subtract(), &max, &output, false);
output.applyTransform(nd4j::transform::Exp);
NDArray sum = output.reduceAlongDims(nd4j::reduce::Sum, {dimension}, true);
output /= sum;
}
}
///////////////////////////////////////////////////////////////////
void softmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
BUILD_SINGLE_SELECTOR(input.dataType(), softmax_, (context, input, output, dimension), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
void prelu(nd4j::LaunchContext * context, const NDArray& input, const NDArray& alpha, NDArray& output) {
const Nd4jLong inputLen = input.lengthOf();
const Nd4jLong* inputShapeInfo = input.getShapeInfo();
const Nd4jLong* alphaShapeInfo = alpha.getShapeInfo();
PRAGMA_OMP_PARALLEL_FOR_IF(inputLen > Environment::getInstance()->elementwiseThreshold())
for(Nd4jLong i = 0; i < inputLen; ++i) {
// FIXME: double!
double x = input.e<double>(i);
if(x < 0.0) {
// FIXME: double
output.p(i, (x * alpha.e<double>(shape::subArrayIndex(i, inputShapeInfo, alphaShapeInfo))));
} else
output.p(i, x);
}
}
//////////////////////////////////////////////////////////////////////////
void preluBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& alpha, const NDArray& dLdO, NDArray& dLdI, NDArray& dLdA) {
const Nd4jLong inputLen = input.lengthOf();
const Nd4jLong* inputShapeInfo = input.getShapeInfo();
const Nd4jLong* alphaShapeInfo = alpha.getShapeInfo();
dLdA.assign(0.0f);
for(Nd4jLong i = 0; i < inputLen; ++i) {
// FIXME: double
double x = input.e<double>(i);
double grO = dLdO.e<double>(i);
if(x < 0.0) {
Nd4jLong alphaInd = shape::subArrayIndex(i, inputShapeInfo, alphaShapeInfo);
dLdI.p(i, grO * alpha.e<double>(alphaInd));
double prevVal = dLdA.e<double>(alphaInd);
prevVal += (grO * x);
dLdA.p(alphaInd, prevVal );
}
else
dLdI.p(i, grO);
}
}
bool checkAlphaShapeLen(std::vector<Nd4jLong> const& expectedShape, Nd4jLong shapeLen) {
Nd4jLong expectedAlphaLen = std::accumulate(expectedShape.cbegin(), expectedShape.cend(), 1, std::multiplies<Nd4jLong>());
return expectedAlphaLen == shapeLen;
}
template <typename T>
static void thresholdRelu_(NDArray const& input, double threshold, NDArray& output) {
auto routine = LAMBDA_T(_x, threshold) {
return _x > (T)threshold? _x: (T)0.f;
};
const_cast<NDArray&>(input).applyLambda<T>(routine, &output);
}
void thresholdRelu(nd4j::LaunchContext * context, NDArray const& input, double threshold, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), thresholdRelu_, (input, threshold, output), FLOAT_TYPES);
}
template <typename T>
static void thresholdReluDerivative_(nd4j::LaunchContext * context, NDArray* input, double theta, NDArray* dLdO, NDArray* output) {
auto derivative = LAMBDA_TT(_x, grO, theta) {if (_x > theta) return grO; else return static_cast<T>(0); };
input->applyPairwiseLambda<T>(dLdO, derivative, output);
}
void thresholdReluDerivative(nd4j::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), thresholdReluDerivative_, (context, input, threshold, dLdO, output), FLOAT_TYPES);
}
///////////////////////////////////////////////////////////////////
void logSoftmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
const int rank = input.rankOf();
if(input.isVector()) {
if(rank == 1 || input.sizeAt(dimension) != 1) {
BUILD_SINGLE_SELECTOR(input.dataType(), logSoftMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
}
else
output = 0.;
}
else {
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDims(reduce::Max, {dimension}, true);
(input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily
auto sumAlongDim = output.reduceAlongDims(reduce::Sum, {dimension}, true);
output /= sumAlongDim;
output.applyTransform(transform::Log);
}
}
BUILD_SINGLE_TEMPLATE(template void thresholdReluDerivative_, (nd4j::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output), FLOAT_TYPES);
BUILD_SINGLE_TEMPLATE(template void softmax_, (nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension), FLOAT_TYPES);
BUILD_SINGLE_TEMPLATE(template void logSoftMaxForVector_, (void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo), FLOAT_TYPES);
BUILD_SINGLE_TEMPLATE(template void _softMaxDerivForVector, (nd4j::LaunchContext * context, const void *input, const Nd4jLong *inShapeInfo, void *output), FLOAT_TYPES);
}
}
}